These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20817162)

  • 1. Mechanisms of initial endplate failure in the human vertebral body.
    Fields AJ; Lee GL; Keaveny TM
    J Biomech; 2010 Dec; 43(16):3126-31. PubMed ID: 20817162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture.
    Tzermiadianos MN; Renner SM; Phillips FM; Hadjipavlou AG; Zindrick MR; Havey RM; Voronov M; Patwardhan AG
    Eur Spine J; 2008 Nov; 17(11):1522-30. PubMed ID: 18795344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone.
    Jackman TM; Hussein AI; Adams AM; Makhnejia KK; Morgan EF
    J Orthop Res; 2014 Jul; 32(7):880-6. PubMed ID: 24700382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrosis of the disc - risk factor for osteoporotic vertebral fractures (biomechanical analysis).
    Wendlová J
    Wien Med Wochenschr; 2010 Sep; 160(17-18):464-9. PubMed ID: 20737224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body.
    Eswaran SK; Gupta A; Keaveny TM
    Bone; 2007 Oct; 41(4):733-9. PubMed ID: 17643362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone.
    Zhao FD; Pollintine P; Hole BD; Adams MA; Dolan P
    Bone; 2009 Feb; 44(2):372-9. PubMed ID: 19049912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeing double: a comparison of microstructure, biomechanical function, and adjacent disc health between double- and single-layer vertebral endplates.
    Fields AJ; Sahli F; Rodriguez AG; Lotz JC
    Spine (Phila Pa 1976); 2012 Oct; 37(21):E1310-7. PubMed ID: 22781006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion.
    Jackman TM; DelMonaco AM; Morgan EF
    J Biomech; 2016 Jan; 49(2):267-75. PubMed ID: 26792288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical and trabecular load sharing in the human vertebral body.
    Eswaran SK; Gupta A; Adams MF; Keaveny TM
    J Bone Miner Res; 2006 Feb; 21(2):307-14. PubMed ID: 16418787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromechanics of the human vertebral body for forward flexion.
    Yang H; Nawathe S; Fields AJ; Keaveny TM
    J Biomech; 2012 Aug; 45(12):2142-8. PubMed ID: 22704826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vertebroplasty on endplate subsidence in elderly female spines.
    Nagaraja S; Awada HK; Dreher ML; Bouck JT; Gupta S
    J Neurosurg Spine; 2015 Mar; 22(3):273-82. PubMed ID: 25525963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine.
    Adams MA; Pollintine P; Tobias JH; Wakley GK; Dolan P
    J Bone Miner Res; 2006 Sep; 21(9):1409-16. PubMed ID: 16939399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric finite element analysis of vertebral bodies affected by tumors.
    Whyne CM; Hu SS; Lotz JC
    J Biomech; 2001 Oct; 34(10):1317-24. PubMed ID: 11522311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries.
    Cinotti G; Della Rocca C; Romeo S; Vittur F; Toffanin R; Trasimeni G
    Spine (Phila Pa 1976); 2005 Jan; 30(2):174-80. PubMed ID: 15644752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical properties of lumbar endplates and their correlation with MRI findings of lumbar degeneration.
    Liu J; Hao L; Suyou L; Shan Z; Maiwulanjiang M; Li S; Wang C; Fan S; Zhao F
    J Biomech; 2016 Feb; 49(4):586-93. PubMed ID: 26892896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional distribution of computed tomography attenuation across the lumbar endplate.
    Segami K; Espinoza Orías AA; Miyamoto H; Kanzaki K; An HS; Inoue N
    PLoS One; 2021; 16(10):e0259001. PubMed ID: 34705863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study.
    Anitha DP; Baum T; Kirschke JS; Subburaj K
    Spine J; 2020 Apr; 20(4):665-671. PubMed ID: 31841703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative, 3D Visualization of the Initiation and Progression of Vertebral Fractures Under Compression and Anterior Flexion.
    Jackman TM; Hussein AI; Curtiss C; Fein PM; Camp A; De Barros L; Morgan EF
    J Bone Miner Res; 2016 Apr; 31(4):777-88. PubMed ID: 26590372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution.
    Homminga J; Weinans H; Gowin W; Felsenberg D; Huiskes R
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1555-61. PubMed ID: 11462085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.