BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20817261)

  • 1. Water body and riparian buffer strip characteristics in a vineyard area to support aquatic pesticide exposure assessment.
    Ohliger R; Schulz R
    Sci Total Environ; 2010 Oct; 408(22):5405-13. PubMed ID: 20817261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters.
    Stehle S; Dabrowski JM; Bangert U; Schulz R
    Sci Total Environ; 2016 Mar; 545-546():171-83. PubMed ID: 26745303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale.
    Bereswill R; Streloke M; Schulz R
    Integr Environ Assess Manag; 2014 Apr; 10(2):286-98. PubMed ID: 24431010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review.
    Reichenberger S; Bach M; Skitschak A; Frede HG
    Sci Total Environ; 2007 Oct; 384(1-3):1-35. PubMed ID: 17588646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation--a pan-European case study on pesticides.
    Weissteiner CJ; Pistocchi A; Marinov D; Bouraoui F; Sala S
    Sci Total Environ; 2014 Jun; 484():64-73. PubMed ID: 24686146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level.
    Probst M; Berenzen N; Lentzen-Godding A; Schulz R
    Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff.
    Zhang X; Zhang M
    Sci Total Environ; 2011 Apr; 409(10):1949-58. PubMed ID: 21377192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The assessment of spray drift damage for ten major crops in Belgium.
    de Schampheleire M; Spanoghe P; Steurbaut W; Nuyttens D; Sonck B
    Commun Agric Appl Biol Sci; 2005; 70(4):1037-42. PubMed ID: 16628952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current-use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements.
    Bereswill R; Streloke M; Schulz R
    Environ Toxicol Chem; 2013 Jun; 32(6):1254-63. PubMed ID: 23404692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms.
    de Snoo GR; de Wit PJ
    Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riparian buffer zones as pesticide filters of no-till crops.
    Aguiar TR; Bortolozo FR; Hansel FA; Rasera K; Ferreira MT
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10618-26. PubMed ID: 25744820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure and risk assessment of zinc in Japanese surface waters.
    Naito W; Kamo M; Tsushima K; Iwasaki Y
    Sci Total Environ; 2010 Sep; 408(20):4271-84. PubMed ID: 20619879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.
    Lefrancq M; Imfeld G; Payraudeau S; Millet M
    Sci Total Environ; 2013 Jan; 442():503-8. PubMed ID: 23201604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level.
    Berenzen N; Lentzen-Godding A; Probst M; Schulz H; Schulz R; Liess M
    Chemosphere; 2005 Feb; 58(5):683-91. PubMed ID: 15620762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure.
    Noel S; Billo Bah B
    Commun Agric Appl Biol Sci; 2009; 74(1):165-70. PubMed ID: 20218525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of non-agricultural pesticides to pesticide load in surface water.
    Skark C; Zullei-Seibert N; Willme U; Gatzemann U; Schlett C
    Pest Manag Sci; 2004 Jun; 60(6):525-30. PubMed ID: 15198324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorpyrifos and atrazine removal from runoff by vegetated filter strips: experiments and predictive modeling.
    Poletika NN; Coody PN; Fox GA; Sabbagh GJ; Dolder SC; White J
    J Environ Qual; 2009; 38(3):1042-52. PubMed ID: 19329692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revised framework for pesticide aquatic environmental exposure assessment that accounts for vegetative filter strips.
    Sabbagh GJ; Fox GA; Muñoz-Carpena R; Lenz MF
    Environ Sci Technol; 2010 May; 44(10):3839-45. PubMed ID: 20394426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer.
    Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M
    Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.