These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20817261)

  • 41. Mitigation of azinphos-methyl in a vegetated stream: comparison of runoff- and spray-drift.
    Dabrowski JM; Bennett ER; Bollen A; Schulz R
    Chemosphere; 2006 Jan; 62(2):204-12. PubMed ID: 16002124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling spray drift and runoff-related inputs of pesticides to receiving water.
    Zhang X; Luo Y; Goh KS
    Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drift studies--comparison of field and wind tunnel experiments.
    Stadler R; Regenauer W
    Commun Agric Appl Biol Sci; 2005; 70(4):971-3. PubMed ID: 16628944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modelling aquatic exposure and effects of insecticides--application to south-eastern Australia.
    Burgert S; Schäfer RB; Foit K; Kattwinkel M; Metzeling L; MacEwan R; Kefford BJ; Liess M
    Sci Total Environ; 2011 Jun; 409(14):2807-14. PubMed ID: 21636110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward quantifying water pollution abatement in response to installing buffers on crop land.
    Dosskey MG
    Environ Manage; 2001 Nov; 28(5):577-98. PubMed ID: 11568840
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel index for assessment of riparian strip efficiency in agricultural landscapes using high spatial resolution satellite imagery.
    Novoa J; Chokmani K; Lhissou R
    Sci Total Environ; 2018 Dec; 644():1439-1451. PubMed ID: 30743856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GIS-based procedure for site-specific risk assessment of pesticides for aquatic ecosystems.
    Sala S; Vighi M
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):1-12. PubMed ID: 17935784
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative ecological risks of pesticides used in plantation production of papaya: application of the SYNOPS indicator.
    Hernández-Hernández CN; Valle-Mora J; Santiesteban-Hernández A; Bello-Mendoza R
    Sci Total Environ; 2007 Aug; 381(1-3):112-25. PubMed ID: 17482661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of plant protection product application dates for environmental fate modeling based on phenological stages of crops.
    Gericke D; Nekovar J; Horold C
    J Environ Sci Health B; 2010 Oct; 45(7):639-47. PubMed ID: 20845180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of pesticide concentrations found in rivers in the UK.
    Brown CD; Bellamy PH; Dubus IG
    Pest Manag Sci; 2002 Apr; 58(4):363-73. PubMed ID: 11975184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Pesticide pollution of groundwater and drinking water by the processes of artificial groundwater enrichment or coastal filtration: underrated sources of contamination].
    Mathys W
    Zentralbl Hyg Umweltmed; 1994 Dec; 196(4):338-59. PubMed ID: 7748439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Landscape parameters driving aquatic pesticide exposure and effects.
    Bunzel K; Liess M; Kattwinkel M
    Environ Pollut; 2014 Mar; 186():90-7. PubMed ID: 24365537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface and ground waters characterization in Tuscany (Italy) by using algal bioassay and pesticide determinations: comparative evaluation of the results and hazard assessment of the pesticides impact on primary productivity.
    Sbrilli G; Bimbi B; Cioni F; Pagliai L; Luchi F; Lanciotti E
    Chemosphere; 2005 Feb; 58(5):571-8. PubMed ID: 15620750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Geodata-based probabilistic risk assessment and management of pesticides in Germany: a conceptual framework.
    Schulz R; Stehle S; Elsaesser D; Matezki S; Müller A; Neumann M; Ohliger R; Wogram J; Zenker K
    Integr Environ Assess Manag; 2009 Jan; 5(1):69-79. PubMed ID: 19431292
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling the width and placement of riparian vegetated buffer strips: a case study on the Chi-Jia-Wang stream, Taiwan.
    Lin CY; Chou WC; Lin WT
    J Environ Manage; 2002 Nov; 66(3):269-80. PubMed ID: 12448405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.
    Thapinta A; Hudak PF
    Environ Int; 2003 Apr; 29(1):87-93. PubMed ID: 12605941
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: A case study of the Voluntary Initiative in the UK.
    Garratt J; Kennedy A
    Pest Manag Sci; 2006 Dec; 62(12):1138-49. PubMed ID: 16981249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulatory Modeling of Pesticide Aquatic Exposures in California's Agricultural Receiving Waters.
    Xie Y; Luo Y; Singhasemanon N; Goh KS
    J Environ Qual; 2018 Nov; 47(6):1453-1461. PubMed ID: 30512076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pesticide buffer zones for the protection of wildlife.
    Burn A
    Pest Manag Sci; 2003 May; 59(5):583-90. PubMed ID: 12741527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.