These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2081732)

  • 21. Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning.
    Fetisova ZG; Mauring K
    FEBS Lett; 1992 Aug; 307(3):371-4. PubMed ID: 1644194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2022 Dec; 154(3):291-302. PubMed ID: 36115930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The functional role of protein in the organization of bacteriochlorophyll c in chlorosomes of Chloroflexus aurantiacus.
    Niedermeier G; Scheer H; Feick RG
    Eur J Biochem; 1992 Mar; 204(2):685-92. PubMed ID: 1541281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast excited-state dynamics in chlorosomes isolated from the photosynthetic filamentous green bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Shuvalov VA; Fetisova ZG
    Physiol Plant; 2019 May; 166(1):12-21. PubMed ID: 30499123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7 kDa polypeptide.
    Lehmann RP; Brunisholz RA; Zuber H
    FEBS Lett; 1994 Apr; 342(3):319-24. PubMed ID: 8150092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quenching of bacteriochlorophyll fluorescence in chlorosomes from Chloroflexus aurantiacus by exogenous quinones.
    Tokita S; Frigaard NU; Hirota M; Shimada K; Matsuura K
    Photochem Photobiol; 2000 Sep; 72(3):345-50. PubMed ID: 10989605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria.
    Saga Y; Tamiaki H
    J Biosci Bioeng; 2006 Aug; 102(2):118-23. PubMed ID: 17027873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On Excitation Energy Transfer within the Baseplate BChl
    Jassas M; Goodson C; Blankenship RE; Jankowiak R; Kell A
    J Phys Chem B; 2019 Nov; 123(46):9786-9791. PubMed ID: 31660744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus.
    Montaño GA; Wu HM; Lin S; Brune DC; Blankenship RE
    Biochemistry; 2003 Sep; 42(34):10246-51. PubMed ID: 12939153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001.
    Gich F; Airs RL; Danielsen M; Keely BJ; Abella CA; Garcia-Gil J; Miller M; Borrego CM
    Arch Microbiol; 2003 Dec; 180(6):417-26. PubMed ID: 14610639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus.
    Feick RG; Fitzpatrick M; Fuller RC
    J Bacteriol; 1982 May; 150(2):905-15. PubMed ID: 7068536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature shift effect on the Chlorobaculum tepidum chlorosomes.
    Tang JK; Xu Y; Muhlmann GM; Zare F; Khin Y; Tam SW
    Photosynth Res; 2013 May; 115(1):23-41. PubMed ID: 23435510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth.
    Ma YZ; Cox RP; Gillbro T; Miller M
    Photosynth Res; 1996 Feb; 47(2):157-65. PubMed ID: 24301823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent behavior of bacteriochlorophyll and bacteriopheophytin in the photosynthetic reaction center from Rhodobacter sphaeroides.
    Ivancich A; Lutz M; Mattioli TA
    Biochemistry; 1997 Mar; 36(11):3242-53. PubMed ID: 9116002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photooxidation of the primary electron donor.
    Zabelin AA; Shkuropatova VA; Shuvalov VA; Shkuropatov AY
    Biochemistry (Mosc); 2012 Feb; 77(2):157-64. PubMed ID: 22348475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacteriochlorophyll c formation via the C5 pathway of 5-aminolevulinic acid synthesis in Chloroflexus aurantiacus.
    Oh-hama T; Santander PJ; Stolowich NJ; Scott AI
    FEBS Lett; 1991 Apr; 281(1-2):173-6. PubMed ID: 2015889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pressure-induced red shift and broadening of the Qy absorption of main light-harvesting antennae chlorosomes from green photosynthetic bacteria and their dependency upon alkyl substituents of the composite bacteriochlorophylls.
    Mizoguchi T; Kim TY; Sawamura S; Tamiaki H
    J Phys Chem B; 2008 Dec; 112(51):16759-65. PubMed ID: 19367895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes.
    Balaban TS; Holzwarth AR; Schaffner K; Boender GJ; de Groot HJ
    Biochemistry; 1995 Nov; 34(46):15259-66. PubMed ID: 7578141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular self-assembly of bacteriochlorophyll c molecules in aerosolized droplets to synthesize biomimetic chlorosomes.
    Shah VB; Ferris C; S Orf G; Kavadiya S; Ray JR; Jun YS; Lee B; Blankenship RE; Biswas P
    J Photochem Photobiol B; 2018 Aug; 185():161-168. PubMed ID: 29936409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides.
    Allen JP; Artz K; Lin X; Williams JC; Ivancich A; Albouy D; Mattioli TA; Fetsch A; Kuhn M; Lubitz W
    Biochemistry; 1996 May; 35(21):6612-9. PubMed ID: 8639609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.