These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2081752)
1. Use of metal chelate affinity chromatography for removal of zinc ions from alkaline phosphatase from Escherichia coli. Lubińska VK; Muszyńska G J Chromatogr; 1990 Nov; 522():171-7. PubMed ID: 2081752 [TBL] [Abstract][Full Text] [Related]
2. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. Coleman JE; Nakamura K; Chlebowski JF J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751 [TBL] [Abstract][Full Text] [Related]
3. Phosphate content of Escherichia coli alkaline phosphatase isozymes. The effect of phosphate and zinc on the separation of isozymes. McManaman J; Wilson IB Biochemistry; 1978 Dec; 17(25):5372-6. PubMed ID: 365226 [TBL] [Abstract][Full Text] [Related]
4. Zinc and magnesium content of alkaline phosphatase from Escherichia coli. Bosron WF; Kennedy FS; Vallee BL Biochemistry; 1975 May; 14(10):2275-82. PubMed ID: 238559 [TBL] [Abstract][Full Text] [Related]
5. Effect of magnesium on the properties of zinc alkaline phosphatase. Bosron WF; Anderson RA; Falk MC; Kennedy FS; Vallee BL Biochemistry; 1977 Feb; 16(4):610-4. PubMed ID: 13822 [TBL] [Abstract][Full Text] [Related]
6. Purification of Escherichia coli alkaline phosphatase on an ion-exchange high-performance liquid chromatographic column using carboxymethyl dextrans. Dunn BE; Edberg SC; Torres AR Anal Biochem; 1988 Jan; 168(1):25-30. PubMed ID: 2452588 [TBL] [Abstract][Full Text] [Related]
7. The relation between activity and zinc and chloride binding of Escherichia coli alkaline phosphatase. Norne JE; Szajn H; Csopak H; Reimarsson P; Lindman B Arch Biochem Biophys; 1979 Sep; 196(2):552-6. PubMed ID: 384916 [No Abstract] [Full Text] [Related]
8. Factors affecting the zinc content of E. coli alkaline phosphatase. Csopak H; Szajn H Arch Biochem Biophys; 1973 Aug; 157(2):374-9. PubMed ID: 4199855 [No Abstract] [Full Text] [Related]
9. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
10. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase. Trotman CN; Greenwood C Biochem J; 1971 Aug; 124(1):25-30. PubMed ID: 4942389 [TBL] [Abstract][Full Text] [Related]
11. Role of magnesium in Escherichia coli alkaline phosphatase. Anderson RA; Bosron WF; Kennedy FS; Vallee BL Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131 [TBL] [Abstract][Full Text] [Related]
12. Effects of antibodies to various molecular forms of a mutationally altered Escherichia coli alkaline phosphatase on its activation by zinc. Pages JM; Varenne S; Lazdunski C Eur J Biochem; 1976 Aug; 67(1):145-53. PubMed ID: 786617 [TBL] [Abstract][Full Text] [Related]
14. Purification of Escherichia coli alkaline phosphatase. Improved growth conditions for the bacteria, modified methods of preparation of the enzyme. Csopak H; Garellick G; Hallberg B Acta Chem Scand; 1972; 26(6):2401-11. PubMed ID: 4564434 [No Abstract] [Full Text] [Related]
15. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
16. Replacement of metal in metalloenzymes. A lead-alkaline phosphatase. Sabbioni E; Girardi F; Marafante E Biochemistry; 1976 Jan; 15(2):271-6. PubMed ID: 813761 [TBL] [Abstract][Full Text] [Related]
17. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis. Xu X; Qin XQ; Kantrowitz ER Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685 [TBL] [Abstract][Full Text] [Related]
18. Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase. Cioni P; Piras L; Strambini GB Eur J Biochem; 1989 Nov; 185(3):573-9. PubMed ID: 2686989 [TBL] [Abstract][Full Text] [Related]
19. Formamide-induced dissociation and inactivation of Escherichia coli alkaline phosphatase. Metal-dependent reassociation and restoration of activity from isolated subunits. Falk MC; Bethune JL; Vallee BL Biochemistry; 1982 Mar; 21(7):1471-8. PubMed ID: 7044413 [TBL] [Abstract][Full Text] [Related]
20. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]