These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20817797)

  • 1. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence.
    Bhartia R; Salas EC; Hug WF; Reid RD; Lane AL; Edwards KJ; Nealson KH
    Appl Environ Microbiol; 2010 Nov; 76(21):7231-7. PubMed ID: 20817797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence Microscopy with Deep UV, Near UV, and Visible Excitation for
    Case N; Johnston N; Nadeau J
    Astrobiology; 2024 Mar; 24(3):300-317. PubMed ID: 38507693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation.
    Kikawada M; Ono A; Inami W; Kawata Y
    Anal Chem; 2016 Jan; 88(2):1407-11. PubMed ID: 26669415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep ultraviolet 266 nm laser excitation for flow cytometry.
    Telford W
    Cytometry A; 2024 Mar; 105(3):214-221. PubMed ID: 38116677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep UV autofluorescence microscopy for cell biology and tissue histology.
    Jamme F; Kascakova S; Villette S; Allouche F; Pallu S; Rouam V; Réfrégiers M
    Biol Cell; 2013 Jul; 105(7):277-88. PubMed ID: 23517500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues.
    Jamme F; Villette S; Giuliani A; Rouam V; Wien F; Lagarde B; Réfrégiers M
    Microsc Microanal; 2010 Oct; 16(5):507-14. PubMed ID: 20738889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometry sorting protocol of Bacillus spore using ultraviolet laser and autofluorescence as main sorting criterion.
    Laflamme C; Verreault D; Ho J; Duchaine C
    J Fluoresc; 2006 Nov; 16(6):733-7. PubMed ID: 17031569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of the SHERLOC Deep Ultraviolet Fluorescence-Raman Spectrometer on the
    Uckert K; Bhartia R; Beegle LW; Monacelli B; Asher SA; Burton AS; Bykov SV; Davis K; Fries MD; Jakubek RS; Hollis JR; Roppel RD; Wu YH
    Appl Spectrosc; 2021 Jul; 75(7):763-773. PubMed ID: 33876994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of organic and biological materials with deep ultraviolet excitation.
    Bhartia R; Hug WF; Salas EC; Reid RD; Sijapati KK; Tsapin A; Abbey W; Nealson KH; Lane AL; Conrad PG
    Appl Spectrosc; 2008 Oct; 62(10):1070-7. PubMed ID: 18926014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.
    Barulin A; Claude JB; Patra S; Bonod N; Wenger J
    Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.
    Kim J; Song H; Park I; Carlisle CR; Bonin K; Guthold M
    Microsc Res Tech; 2011 Mar; 74(3):219-24. PubMed ID: 20597072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy single-frequency 167  nm deep-ultraviolet laser.
    Li JJ; Zhang FF; Wang ZM; Xu YC; Liu XC; Zong N; Zhang SJ; Xu FL; Yang F; Yuan L; Kou Y; Bo Y; Cui DF; Peng QJ; Wang XY; Liu LJ; Chen CT; Xu ZY
    Opt Lett; 2018 Jun; 43(11):2563-2566. PubMed ID: 29856430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep UV Laser-Induced Fluorescence for Pharmaceutical Cleaning Validation.
    Chullipalliyalil K; Lewis L; McAuliffe MAP
    Anal Chem; 2020 Jan; 92(1):1447-1454. PubMed ID: 31822059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 224 nm Deep-UV laser for native fluorescence, a new opportunity for biomolecules detection.
    Bonnin C; Matoga M; Garnier N; Debroche C; de Vandière B; Chaminade P
    J Chromatogr A; 2007 Jul; 1156(1-2):94-100. PubMed ID: 17174961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free real-time imaging in microchip free-flow electrophoresis applying high speed deep UV fluorescence scanning.
    Köhler S; Nagl S; Fritzsche S; Belder D
    Lab Chip; 2012 Feb; 12(3):458-63. PubMed ID: 22011722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis.
    Schulze P; Ludwig M; Kohler F; Belder D
    Anal Chem; 2005 Mar; 77(5):1325-9. PubMed ID: 15732914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF).
    Couderc F; Ong-Meang V; Poinsot V
    Electrophoresis; 2017 Jan; 38(1):135-149. PubMed ID: 27445082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution.
    Kaščáková S; Maigre L; Chevalier J; Réfrégiers M; Pagès JM
    PLoS One; 2012; 7(6):e38624. PubMed ID: 22719907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet optical horn antennas for label-free detection of single proteins.
    Barulin A; Roy P; Claude JB; Wenger J
    Nat Commun; 2022 Apr; 13(1):1842. PubMed ID: 35383189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.