These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20817797)

  • 21. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.
    Schulze P; Ludwig M; Belder D
    Electrophoresis; 2008 Dec; 29(24):4894-9. PubMed ID: 19025868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan.
    Roy P; Claude JB; Tiwari S; Barulin A; Wenger J
    Nano Lett; 2023 Jan; 23(2):497-504. PubMed ID: 36603115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep ultraviolet lasers for flow cytometry.
    Telford W; Georges T; Miller C; Voluer P
    Cytometry A; 2019 Feb; 95(2):227-233. PubMed ID: 30423208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.
    Geissler D; Belder D
    Electrophoresis; 2015 Dec; 36(23):2976-82. PubMed ID: 26333008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.
    Salas EC; Bhartia R; Anderson L; Hug WF; Reid RD; Iturrino G; Edwards KJ
    Front Microbiol; 2015; 6():1260. PubMed ID: 26617595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the luminescence between dried and wet bacillus spores.
    Kunnil J; Swartz B; Reinisch L
    Appl Opt; 2004 Oct; 43(28):5404-9. PubMed ID: 15495433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-mJ, kHz, ps deep-ultraviolet source.
    Chang CL; Krogen P; Liang H; Stein GJ; Moses J; Lai CJ; Siqueira JP; Zapata LE; Kärtner FX; Hong KH
    Opt Lett; 2015 Feb; 40(4):665-8. PubMed ID: 25680176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autofluorescence as a viability marker for detection of bacterial spores.
    Laflamme C; Verreault D; Lavigne S; Trudel L; Ho J; Duchaine C
    Front Biosci; 2005 May; 10():1647-53. PubMed ID: 15769654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization.
    Zhao Q; Wang R; Zhang S; Wang T; Song P; Zheng G
    APL Photonics; 2024 Sep; 9(9):090801. PubMed ID: 39301193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation.
    Alimova A; Katz A; Savage HE; Shah M; Minko G; Will DV; Rosen RB; McCormick SA; Alfano RR
    Appl Opt; 2003 Jul; 42(19):4080-7. PubMed ID: 12868850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Biochem; 2007 Aug; 367(1):104-10. PubMed ID: 17553449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-color two-photon excitation of intrinsic protein fluorescence: label-free observation of proteolytic digestion of bovine serum albumin.
    Quentmeier S; Quentmeier CC; Walla PJ; Gericke KH
    Chemphyschem; 2009 Jul; 10(9-10):1607-13. PubMed ID: 19156800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultraviolet Photostability Improvement for Autofluorescence Correlation Spectroscopy on Label-Free Proteins.
    Barulin A; Wenger J
    J Phys Chem Lett; 2020 Mar; 11(6):2027-2035. PubMed ID: 32083877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophoresis microchip with integrated waveguides for simultaneous native UV fluorescence and absorbance detection.
    Ohlsson PD; Ordeig O; Mogensen KB; Kutter JP
    Electrophoresis; 2009 Dec; 30(24):4172-8. PubMed ID: 20013903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles.
    Na M; Zhang S; Liu J; Ma S; Han Y; Wang Y; He Y; Chen H; Chen X
    J Hazard Mater; 2020 Mar; 386():121956. PubMed ID: 31884372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep ultraviolet tip-enhanced fluorescence.
    Meng L; Gao M; Sun M
    Nanotechnology; 2019 Jan; 30(3):035202. PubMed ID: 30418945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D imaging of enzymes working in situ.
    Jamme F; Bourquin D; Tawil G; Viksø-Nielsen A; Buléon A; Réfrégiers M
    Anal Chem; 2014 Jun; 86(11):5265-70. PubMed ID: 24796213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-photon excited fluorescence detection at 420 nm for label-free detection of small aromatics and proteins in microchip electrophoresis.
    Schulze P; Schüttpelz M; Sauer M; Belder D
    Lab Chip; 2007 Dec; 7(12):1841-4. PubMed ID: 18030410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress.
    König K; So PT; Mantulin WW; Tromberg BJ; Gratton E
    J Microsc; 1996 Sep; 183(Pt 3):197-204. PubMed ID: 8858857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.