BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20817811)

  • 1. Towards enhanced galactose utilization by Lactococcus lactis.
    Neves AR; Pool WA; Solopova A; Kok J; Santos H; Kuipers OP
    Appl Environ Microbiol; 2010 Nov; 76(21):7048-60. PubMed ID: 20817811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway.
    Grossiord BP; Luesink EJ; Vaughan EE; Arnaud A; de Vos WM
    J Bacteriol; 2003 Feb; 185(3):870-8. PubMed ID: 12533462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
    Sahoo TK; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL; Davey GP; Pearce LE; Thomas TD
    J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alpha-phosphoglucomutase of Lactococcus lactis is unrelated to the alpha-D-phosphohexomutase superfamily and is encoded by the essential gene pgmH.
    Neves AR; Pool WA; Castro R; Mingote A; Santos F; Kok J; Kuipers OP; Santos H
    J Biol Chem; 2006 Dec; 281(48):36864-73. PubMed ID: 16980299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain.
    Kimoto-Nira H; Moriya N; Ohmori H; Suzuki C
    J Food Prot; 2014 Jul; 77(7):1161-7. PubMed ID: 24988023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further Elucidation of Galactose Utilization in
    Solopova A; Bachmann H; Teusink B; Kok J; Kuipers OP
    Front Microbiol; 2018; 9():1803. PubMed ID: 30123211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering.
    Bro C; Knudsen S; Regenberg B; Olsson L; Nielsen J
    Appl Environ Microbiol; 2005 Nov; 71(11):6465-72. PubMed ID: 16269670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis.
    Boels IC; Kleerebezem M; de Vos WM
    Appl Environ Microbiol; 2003 Feb; 69(2):1129-35. PubMed ID: 12571039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactose and D-galactose metabolism in group N streptococci: presence of enzymes for both the D-galactose 1-phosphate and D-tagatose 6-phosphate pathways.
    Bissett DL; Anderson RL
    J Bacteriol; 1974 Jan; 117(1):318-20. PubMed ID: 4358045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.