BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20817949)

  • 1. Rate of oxidative modification of cytochrome c by hydrogen peroxide is modulated by Hofmeister anions.
    Tomášková N; Varinská L; Sedlák E
    Gen Physiol Biophys; 2010 Sep; 29(3):255-65. PubMed ID: 20817949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early modification of cytochrome c by hydrogen peroxide triggers its fast degradation.
    Tomášková N; Novák P; Kožár T; Petrenčáková M; Jancura D; Yassaghi G; Man P; Sedlák E
    Int J Biol Macromol; 2021 Mar; 174():413-423. PubMed ID: 33529629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of cyanide binding as a probe of local stability/flexibility of cytochrome c.
    Varhac R; Tomásková N; Fabián M; Sedlák E
    Biophys Chem; 2009 Sep; 144(1-2):21-6. PubMed ID: 19545938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational stability and dynamics of cytochrome c affect its alkaline isomerization.
    Tomásková N; Varhac R; Zoldák G; Oleksáková L; Sedláková D; Sedlák E
    J Biol Inorg Chem; 2007 Feb; 12(2):257-66. PubMed ID: 17120073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion-Specific Effects on the Alkaline State of Cytochrome c.
    Sedlák E; Žár T; Varhač R; Musatov A; Tomášková N
    Biochemistry (Mosc); 2021 Jan; 86(1):59-73. PubMed ID: 33705282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lyotropic anions on thermodynamic stability and dynamics of horse cytochrome c.
    Jain R; Agarwal MC; Kumar R; Sharma D; Kumar R
    Biophys Chem; 2018 Sep; 240():88-97. PubMed ID: 29957358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior.
    Jiang X; Shang L; Wang Y; Dong S
    Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function.
    Xiao F; Yue L; Li S; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jun; 162():69-74. PubMed ID: 26978787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates.
    Lee CH; Lang J; Yen CW; Shih PC; Lin TS; Mou CY
    J Phys Chem B; 2005 Jun; 109(25):12277-86. PubMed ID: 16852515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo.
    Lee I; Salomon AR; Yu K; Doan JW; Grossman LI; Hüttemann M
    Biochemistry; 2006 Aug; 45(30):9121-8. PubMed ID: 16866357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch.
    Amacher JF; Zhong F; Lisi GP; Zhu MQ; Alden SL; Hoke KR; Madden DR; Pletneva EV
    J Am Chem Soc; 2015 Jul; 137(26):8435-49. PubMed ID: 26038984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met-heme iron bond.
    Wang Z; Ando Y; Nugraheni AD; Ren C; Nagao S; Hirota S
    Mol Biosyst; 2014 Dec; 10(12):3130-7. PubMed ID: 25224641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of peroxynitrite interaction with cytochrome c.
    Gebicka L; Didik J
    Acta Biochim Pol; 2003; 50(3):815-23. PubMed ID: 14515162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered holocytochrome
    Mendez DL; Babbitt SE; King JD; D'Alessandro J; Watson MB; Blankenship RE; Mirica LM; Kranz RG
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2235-2240. PubMed ID: 28196881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide radical protects liposome-contained cytochrome c against oxidative damage promoted by peroxynitrite and free radicals.
    Mano CM; Barros MP; Faria PA; Prieto T; Dyszy FH; Nascimento OR; Nantes IL; Bechara EJ
    Free Radic Biol Med; 2009 Sep; 47(6):841-9. PubMed ID: 19559788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urea-induced modification of cytochrome c flexibility as probed by cyanide binding.
    Varhač R
    Biochim Biophys Acta; 2013 Apr; 1834(4):739-44. PubMed ID: 23337638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain swapping of the heme and N-terminal α-helix in Hydrogenobacter thermophilus cytochrome c(552) dimer.
    Hayashi Y; Nagao S; Osuka H; Komori H; Higuchi Y; Hirota S
    Biochemistry; 2012 Oct; 51(43):8608-16. PubMed ID: 23035813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.