These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 20817986)
1. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Venugopal J; Zhang YZ; Ramakrishna S Nanotechnology; 2005 Oct; 16(10):2138-42. PubMed ID: 20817986 [TBL] [Abstract][Full Text] [Related]
2. Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Tan EP; Lim CT Nanotechnology; 2006 May; 17(10):2649-54. PubMed ID: 21727519 [TBL] [Abstract][Full Text] [Related]
3. Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane. Dorati R; Pisani S; Maffeis G; Conti B; Modena T; Chiesa E; Bruni G; Musazzi UM; Genta I Carbohydr Polym; 2018 Nov; 199():150-160. PubMed ID: 30143115 [TBL] [Abstract][Full Text] [Related]
4. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027 [TBL] [Abstract][Full Text] [Related]
5. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Chandrasekaran AR; Venugopal J; Sundarrajan S; Ramakrishna S Biomed Mater; 2011 Feb; 6(1):015001. PubMed ID: 21205999 [TBL] [Abstract][Full Text] [Related]
7. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Venugopal J; Ma LL; Yong T; Ramakrishna S Cell Biol Int; 2005 Oct; 29(10):861-7. PubMed ID: 16153863 [TBL] [Abstract][Full Text] [Related]
8. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Venugopal JR; Zhang Y; Ramakrishna S Artif Organs; 2006 Jun; 30(6):440-6. PubMed ID: 16734595 [TBL] [Abstract][Full Text] [Related]
9. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts. Park IS; Kim SH; Kim YH; Kim IH; Kim SH J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403 [TBL] [Abstract][Full Text] [Related]
10. Development of novel tissue engineering scaffolds via electrospinning. Nair LS; Bhattacharyya S; Laurencin CT Expert Opin Biol Ther; 2004 May; 4(5):659-68. PubMed ID: 15155157 [TBL] [Abstract][Full Text] [Related]
11. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of biomolecules on the surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering. Mattanavee W; Suwantong O; Puthong S; Bunaprasert T; Hoven VP; Supaphol P ACS Appl Mater Interfaces; 2009 May; 1(5):1076-85. PubMed ID: 20355894 [TBL] [Abstract][Full Text] [Related]
13. In-vitro engineering of implantable human urinary tract tissue matrices. Danielsson C; Adelöw C; Hubschmid U; Neuenschwander P; Frey P Swiss Med Wkly; 2007 Mar; 137 Suppl 155():93S-98S. PubMed ID: 17874511 [TBL] [Abstract][Full Text] [Related]
14. Influence of Electrospinning Parameters on the Hydrophilicity of Electrospun Polycaprolactone Nanofibres. Tiyek I; Gunduz A; Yalcinkaya F; Chaloupek J J Nanosci Nanotechnol; 2019 Nov; 19(11):7251-7260. PubMed ID: 31039883 [TBL] [Abstract][Full Text] [Related]
15. Micro/nanofibrous scaffolds electrospun from PCL and small intestinal submucosa. Yoon H; Kim G J Biomater Sci Polym Ed; 2010; 21(5):553-62. PubMed ID: 20338091 [TBL] [Abstract][Full Text] [Related]
16. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane. Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
18. [Application of collagen composite scaffold in vascular tissue engineering]. Zhao J; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Jul; 25(7):859-62. PubMed ID: 21818955 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study. Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]