These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20818004)

  • 1. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis.
    Kim JE; Han CS
    Nanotechnology; 2005 Oct; 16(10):2245-50. PubMed ID: 20818004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope.
    Konishi H; Murata Y; Wongwiriyapan W; Kishida M; Tomita K; Motoyoshi K; Honda S; Katayama M; Yoshimoto S; Kubo K; Hobara R; Matsuda I; Hasegawa S; Yoshimura M; Lee JG; Mori H
    Rev Sci Instrum; 2007 Jan; 78(1):013703. PubMed ID: 17503924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field and tip geometry effects on dielectrophoretic growth of carbon nanotube nanofibrils on scanning probes.
    Wei H; Craig A; Huey BD; Papadimitrakopoulos F; Marcus HL
    Nanotechnology; 2008 Nov; 19(45):455303. PubMed ID: 21832768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection.
    Lim D; Kwon S; Lee J; Shim HC; Lee HW; Kim S
    Rev Sci Instrum; 2009 Oct; 80(10):105103. PubMed ID: 19895087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.
    Berger SD; McGruer NE; Adams GG
    Nanotechnology; 2015 Apr; 26(15):155602. PubMed ID: 25804394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of multi-walled carbon nanotube probes in AFM anodization lithography.
    Sun Choi J; Bae S; Jung Ahn S; Hyun Kim D; Young Jung K; Han C; Choo Chung C; Lee H
    Ultramicroscopy; 2007 Oct; 107(10-11):1091-4. PubMed ID: 17604910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancement in fabrication of carbon nanotube tip for atomic force microscope using multi-axis nanomanipulator in scanning electron microscope.
    Kanth SK; Sharma A; Park BC; Song W; Ruh H; Hong J
    Nanotechnology; 2022 Feb; 33(17):. PubMed ID: 35016164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of carbon nanotube tipped atomic force microscopy in liquid.
    Korayem MH; Ebrahimi N
    Microsc Microanal; 2013 Jun; 19(3):761-8. PubMed ID: 23659615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of functional micro- and nanoneedle electrodes using a carbon nanotube template and electrodeposition.
    An T; Choi W; Lee E; Kim IT; Moon W; Lim G
    Nanoscale Res Lett; 2011 Apr; 6(1):306. PubMed ID: 21711831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-level assembly of carbon nanotube networks using dielectrophoresis.
    Monica AH; Papadakis SJ; Osiander R; Paranjape M
    Nanotechnology; 2008 Feb; 19(8):085303. PubMed ID: 21730724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.
    Sanchez JA; Mengüç MP
    Nanotechnology; 2008 Feb; 19(7):075702. PubMed ID: 21817650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer from a carbon nanotube into vacuum under high electric fields.
    Filip LD; Smith RC; Carey JD; Silva SR
    J Phys Condens Matter; 2009 May; 21(19):195302. PubMed ID: 21825476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip.
    Royer P; Barchiesi D; Lerondel G; Bachelot R
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):821-42. PubMed ID: 15306496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical solutions of ac electrokinetics in interdigitated electrode arrays: electric field, dielectrophoretic and traveling-wave dielectrophoretic forces.
    Sun T; Morgan H; Green NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046610. PubMed ID: 17995130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex dynamics of carbon nanotube probe tips.
    Lee SI; Howell SW; Raman A; Reifenberger R; Nguyen CV; Meyyappan M
    Ultramicroscopy; 2005 May; 103(2):95-102. PubMed ID: 15774270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of electron field-emission characteristics of individual carbon nanotubes: the importance of the tip structure.
    Wang MS; Peng LM; Wang JY; Jin CH; Chen Q
    J Phys Chem B; 2006 May; 110(19):9397-402. PubMed ID: 16686482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron field emission characteristics and field evaporation of a single carbon nanotube.
    Wang MS; Peng LM; Wang JY; Chen Q
    J Phys Chem B; 2005 Jan; 109(1):110-3. PubMed ID: 16850991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.
    Choi J; Park BC; Ahn SJ; Kim DH; Lyou J; Dixson RG; Orji NG; Fu J; Vorburger TV
    J Micro Nanolithogr MEMS MOEMS; 2016 Jul; 15(3):034005. PubMed ID: 27840664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why nano-oxidation with carbon nanotube probes is so stable: II. Bending behaviour of CNT probes during nano-oxidation.
    Kuramochi H; Tokizaki T; Ando K; Yokoyama H; Dagata JA
    Nanotechnology; 2007 Apr; 18(13):135704. PubMed ID: 21730389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.