These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20818034)

  • 1. In situ templated synthesis of anatase single-crystal nanotube arrays.
    Zhao J; Wang X; Sun T; Li L
    Nanotechnology; 2005 Oct; 16(10):2450-4. PubMed ID: 20818034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath.
    Lockman Z; Ismail S; Sreekantan S; Schmidt-Mende L; Macmanus-Driscoll JL
    Nanotechnology; 2010 Feb; 21(5):055601. PubMed ID: 20023309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical growth of vertically-oriented high aspect ratio titania nanotubes by rabid anodization in fluoride-free media.
    Fahim NF; Sekino T; Morks MF; Kusunose T
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1803-18. PubMed ID: 19435043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of titania nanotube arrays in viscous electrolytes.
    Mohamed Ael R; Kasemphaibulsuk N; Rohani S; Barghi S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1998-2008. PubMed ID: 20355616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of TiO
    Lin J; Cai W; Peng Q; Meng F; Zhang D
    Scanning; 2021; 2021():2717921. PubMed ID: 35024085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.
    Albetran H; Vega V; Prida VM; Low IM
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29473854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.
    Xie ZB; Adams S; Blackwood DJ; Wang J
    Nanotechnology; 2008 Oct; 19(40):405701. PubMed ID: 21832630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation.
    Dias-Netipanyj MF; Cowden K; Sopchenski L; Cogo SC; Elifio-Esposito S; Popat KC; Soares P
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109850. PubMed ID: 31349471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties.
    Allam NK; Grimes CA
    Langmuir; 2009 Jul; 25(13):7234-40. PubMed ID: 19563220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication, structural characterization and formation mechanism of multiferroic BiFeO3 nanotubes.
    Singh S; Krupanidhi SB
    J Nanosci Nanotechnol; 2008 Jan; 8(1):335-9. PubMed ID: 18468079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces.
    Bhosle SM; Friedrich CR
    Nanotechnology; 2017 Oct; 28(40):405603. PubMed ID: 28767048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiky mesoporous anatase titania beads: a metastable ammonium titanate-mediated synthesis.
    Chen D; Huang F; Cao L; Cheng YB; Caruso RA
    Chemistry; 2012 Oct; 18(43):13762-9. PubMed ID: 23019011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films.
    Sun Z; Kim DH; Wolkenhauer M; Bumbu GG; Knoll W; Gutmann JS
    Chemphyschem; 2006 Feb; 7(2):370-8. PubMed ID: 16389600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled growth of mesostructured crystalline iron oxide nanowires and Fe-filled carbon nanotube arrays templated by mesoporous silica SBA-16 film.
    Shi K; Chi Y; Yu H; Xin B; Fu H
    J Phys Chem B; 2005 Feb; 109(7):2546-51. PubMed ID: 16851255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anodic formation of anatase TiO2 nanotubes with rod-formed walls for photocatalysis and field emitters.
    Xu X; Zhai T; Shao M; Huang J
    Phys Chem Chem Phys; 2012 Dec; 14(47):16371-6. PubMed ID: 23131810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.