These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 20818174)

  • 21. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells.
    Chiavarina B; Martinez-Outschoorn UE; Whitaker-Menezes D; Howell A; Tanowitz HB; Pestell RG; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Sep; 11(17):3280-9. PubMed ID: 22894905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors.
    Martinez-Outschoorn UE; Lin Z; Trimmer C; Flomenberg N; Wang C; Pavlides S; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Aug; 10(15):2504-20. PubMed ID: 21778829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
    Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M
    EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment.
    Lisanti MP; Martinez-Outschoorn UE; Chiavarina B; Pavlides S; Whitaker-Menezes D; Tsirigos A; Witkiewicz A; Lin Z; Balliet R; Howell A; Sotgia F
    Cancer Biol Ther; 2010 Sep; 10(6):537-42. PubMed ID: 20861671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment.
    Sotgia F; Martinez-Outschoorn UE; Pavlides S; Howell A; Pestell RG; Lisanti MP
    Breast Cancer Res; 2011 Jul; 13(4):213. PubMed ID: 21867571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth.
    Capparelli C; Whitaker-Menezes D; Guido C; Balliet R; Pestell TG; Howell A; Sneddon S; Pestell RG; Martinez-Outschoorn U; Lisanti MP; Sotgia F
    Cell Cycle; 2012 Jun; 11(12):2272-84. PubMed ID: 22684333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production.
    Salem AF; Howell A; Sartini M; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Nov; 11(22):4167-73. PubMed ID: 23047605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis.
    Castello-Cros R; Bonuccelli G; Molchansky A; Capozza F; Witkiewicz AK; Birbe RC; Howell A; Pestell RG; Whitaker-Menezes D; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Jun; 10(12):2021-34. PubMed ID: 21646868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis.
    Pavlides S; Vera I; Gandara R; Sneddon S; Pestell RG; Mercier I; Martinez-Outschoorn UE; Whitaker-Menezes D; Howell A; Sotgia F; Lisanti MP
    Antioxid Redox Signal; 2012 Jun; 16(11):1264-84. PubMed ID: 21883043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts.
    Bonuccelli G; Whitaker-Menezes D; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Witkiewicz AK; Vander Heiden MG; Migneco G; Chiavarina B; Frank PG; Capozza F; Flomenberg N; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 May; 9(10):1960-71. PubMed ID: 20495363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment.
    Martinez-Outschoorn UE; Trimmer C; Lin Z; Whitaker-Menezes D; Chiavarina B; Zhou J; Wang C; Pavlides S; Martinez-Cantarin MP; Capozza F; Witkiewicz AK; Flomenberg N; Howell A; Pestell RG; Caro J; Lisanti MP; Sotgia F
    Cell Cycle; 2010 Sep; 9(17):3515-33. PubMed ID: 20855962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth.
    Carito V; Bonuccelli G; Martinez-Outschoorn UE; Whitaker-Menezes D; Caroleo MC; Cione E; Howell A; Pestell RG; Lisanti MP; Sotgia F
    Cell Cycle; 2012 Sep; 11(18):3403-14. PubMed ID: 22918248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance.
    Salem AF; Whitaker-Menezes D; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Nov; 11(22):4174-80. PubMed ID: 23070475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin.
    Sanchez-Alvarez R; Martinez-Outschoorn UE; Lamb R; Hulit J; Howell A; Gandara R; Sartini M; Rubin E; Lisanti MP; Sotgia F
    Cell Cycle; 2013 Jan; 12(1):172-82. PubMed ID: 23257779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ketone body utilization drives tumor growth and metastasis.
    Martinez-Outschoorn UE; Lin Z; Whitaker-Menezes D; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Nov; 11(21):3964-71. PubMed ID: 23082722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 7-amino carboxycoumarin 2 inhibits lactate induced epithelial-to-mesenchymal transition via MPC1 in oral and breast cancer cells.
    Umar SM; Dev AJR; Kashyap A; Rathee M; Chauhan SS; Sharma A; Prasad CP
    Cell Biol Int; 2024 Aug; 48(8):1185-1197. PubMed ID: 38773713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.