These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
688 related articles for article (PubMed ID: 20818174)
21. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells. Chiavarina B; Martinez-Outschoorn UE; Whitaker-Menezes D; Howell A; Tanowitz HB; Pestell RG; Sotgia F; Lisanti MP Cell Cycle; 2012 Sep; 11(17):3280-9. PubMed ID: 22894905 [TBL] [Abstract][Full Text] [Related]
22. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814 [TBL] [Abstract][Full Text] [Related]
23. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Martinez-Outschoorn UE; Lin Z; Trimmer C; Flomenberg N; Wang C; Pavlides S; Pestell RG; Howell A; Sotgia F; Lisanti MP Cell Cycle; 2011 Aug; 10(15):2504-20. PubMed ID: 21778829 [TBL] [Abstract][Full Text] [Related]
24. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling. Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198 [TBL] [Abstract][Full Text] [Related]
25. Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Lisanti MP; Martinez-Outschoorn UE; Chiavarina B; Pavlides S; Whitaker-Menezes D; Tsirigos A; Witkiewicz A; Lin Z; Balliet R; Howell A; Sotgia F Cancer Biol Ther; 2010 Sep; 10(6):537-42. PubMed ID: 20861671 [TBL] [Abstract][Full Text] [Related]
26. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Sotgia F; Martinez-Outschoorn UE; Pavlides S; Howell A; Pestell RG; Lisanti MP Breast Cancer Res; 2011 Jul; 13(4):213. PubMed ID: 21867571 [TBL] [Abstract][Full Text] [Related]
28. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Lu J; Tan M; Cai Q Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809 [TBL] [Abstract][Full Text] [Related]
29. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production. Salem AF; Howell A; Sartini M; Sotgia F; Lisanti MP Cell Cycle; 2012 Nov; 11(22):4167-73. PubMed ID: 23047605 [TBL] [Abstract][Full Text] [Related]
36. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Salem AF; Whitaker-Menezes D; Howell A; Sotgia F; Lisanti MP Cell Cycle; 2012 Nov; 11(22):4174-80. PubMed ID: 23070475 [TBL] [Abstract][Full Text] [Related]
37. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077 [TBL] [Abstract][Full Text] [Related]
38. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Sanchez-Alvarez R; Martinez-Outschoorn UE; Lamb R; Hulit J; Howell A; Gandara R; Sartini M; Rubin E; Lisanti MP; Sotgia F Cell Cycle; 2013 Jan; 12(1):172-82. PubMed ID: 23257779 [TBL] [Abstract][Full Text] [Related]