These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 20818391)

  • 1. Uniform transitions of the general RNA polymerase II transcription complex.
    Mayer A; Lidschreiber M; Siebert M; Leike K; Söding J; Cramer P
    Nat Struct Mol Biol; 2010 Oct; 17(10):1272-8. PubMed ID: 20818391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-specific RNA polymerase II phosphorylation and the CTD code.
    Kim H; Erickson B; Luo W; Seward D; Graber JH; Pollock DD; Megee PC; Bentley DL
    Nat Struct Mol Biol; 2010 Oct; 17(10):1279-86. PubMed ID: 20835241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly.
    Burugula BB; Jeronimo C; Pathak R; Jones JW; Robert F; Govind CK
    Mol Cell Biol; 2014 Nov; 34(22):4115-29. PubMed ID: 25182531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation.
    Dronamraju R; Strahl BD
    Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters.
    Qiu H; Hu C; Hinnebusch AG
    Mol Cell; 2009 Mar; 33(6):752-62. PubMed ID: 19328068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cap completion and C-terminal repeat domain kinase recruitment underlie the initiation-elongation transition of RNA polymerase II.
    Lidschreiber M; Leike K; Cramer P
    Mol Cell Biol; 2013 Oct; 33(19):3805-16. PubMed ID: 23878398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I.
    Mayer A; Schreieck A; Lidschreiber M; Leike K; Martin DE; Cramer P
    Mol Cell Biol; 2012 Apr; 32(7):1321-31. PubMed ID: 22290438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro analysis of RNA polymerase II elongation complex dynamics.
    Joo YJ; Ficarro SB; Chun Y; Marto JA; Buratowski S
    Genes Dev; 2019 May; 33(9-10):578-589. PubMed ID: 30846429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.
    Lindstrom DL; Hartzog GA
    Genetics; 2001 Oct; 159(2):487-97. PubMed ID: 11606527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo.
    Mason PB; Struhl K
    Mol Cell Biol; 2003 Nov; 23(22):8323-33. PubMed ID: 14585989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transitions in RNA polymerase II elongation complexes at the 3' ends of genes.
    Kim M; Ahn SH; Krogan NJ; Greenblatt JF; Buratowski S
    EMBO J; 2004 Jan; 23(2):354-64. PubMed ID: 14739930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach.
    Krogan NJ; Kim M; Ahn SH; Zhong G; Kobor MS; Cagney G; Emili A; Shilatifard A; Buratowski S; Greenblatt JF
    Mol Cell Biol; 2002 Oct; 22(20):6979-92. PubMed ID: 12242279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus.
    Kaplan CD; Holland MJ; Winston F
    J Biol Chem; 2005 Jan; 280(2):913-22. PubMed ID: 15531585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II.
    Mayer A; Heidemann M; Lidschreiber M; Schreieck A; Sun M; Hintermair C; Kremmer E; Eick D; Cramer P
    Science; 2012 Jun; 336(6089):1723-5. PubMed ID: 22745433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries.
    Krishnamurthy S; Ghazy MA; Moore C; Hampsey M
    Mol Cell Biol; 2009 Jun; 29(11):2925-34. PubMed ID: 19332564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex.
    Liu Y; Warfield L; Zhang C; Luo J; Allen J; Lang WH; Ranish J; Shokat KM; Hahn S
    Mol Cell Biol; 2009 Sep; 29(17):4852-63. PubMed ID: 19581288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases.
    Battaglia S; Lidschreiber M; Baejen C; Torkler P; Vos SM; Cramer P
    Elife; 2017 May; 6():. PubMed ID: 28537551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple roles for the Ess1 prolyl isomerase in the RNA polymerase II transcription cycle.
    Ma Z; Atencio D; Barnes C; DeFiglio H; Hanes SD
    Mol Cell Biol; 2012 Sep; 32(17):3594-607. PubMed ID: 22778132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11.
    Zhang Z; Fu J; Gilmour DS
    Genes Dev; 2005 Jul; 19(13):1572-80. PubMed ID: 15998810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins.
    Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA
    Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.