BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 20818453)

  • 1. Materials challenges toward proton-conducting oxide fuel cells: a critical review.
    Fabbri E; Pergolesi D; Traversa E
    Chem Soc Rev; 2010 Nov; 39(11):4355-69. PubMed ID: 20818453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.
    Malavasi L; Fisher CA; Islam MS
    Chem Soc Rev; 2010 Nov; 39(11):4370-87. PubMed ID: 20848015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate temperature solid oxide fuel cells.
    Brett DJ; Atkinson A; Brandon NP; Skinner SJ
    Chem Soc Rev; 2008 Aug; 37(8):1568-78. PubMed ID: 18648682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.
    Fabbri E; Bi L; Pergolesi D; Traversa E
    Adv Mater; 2012 Jan; 24(2):195-208. PubMed ID: 21953861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.
    Bi L; Boulfrad S; Traversa E
    Chem Soc Rev; 2014 Dec; 43(24):8255-70. PubMed ID: 25134016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.
    Singh K; Nowotny J; Thangadurai V
    Chem Soc Rev; 2013 Mar; 42(5):1961-72. PubMed ID: 23257778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on the metallic interconnects for solid oxide fuel cells.
    Zhu WZ; Yan M
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1471-503. PubMed ID: 15547954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis in solid oxide fuel cells.
    Gorte RJ; Vohs JM
    Annu Rev Chem Biomol Eng; 2011; 2():9-30. PubMed ID: 22432608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced anodes for high-temperature fuel cells.
    Atkinson A; Barnett S; Gorte RJ; Irvine JT; McEvoy AJ; Mogensen M; Singhal SC; Vohs J
    Nat Mater; 2004 Jan; 3(1):17-27. PubMed ID: 14704781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes.
    Bi L; Shafi SP; Da'as EH; Traversa E
    Small; 2018 Aug; 14(32):e1801231. PubMed ID: 29931743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved solid oxide fuel cell performance with nanostructured electrolytes.
    Chao CC; Hsu CM; Cui Y; Prinz FB
    ACS Nano; 2011 Jul; 5(7):5692-6. PubMed ID: 21657222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct in situ probe of electrochemical processes in operating fuel cells.
    Nonnenmann SS; Kungas R; Vohs J; Bonnell DA
    ACS Nano; 2013 Jul; 7(7):6330-6. PubMed ID: 23782103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells.
    Zhu Y; Chen ZG; Zhou W; Jiang S; Zou J; Shao Z
    ChemSusChem; 2013 Dec; 6(12):2249-54. PubMed ID: 24155098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.
    Shao Z; Haile SM; Ahn J; Ronney PD; Zhan Z; Barnett SA
    Nature; 2005 Jun; 435(7043):795-8. PubMed ID: 15944699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lowering the temperature of solid oxide fuel cells.
    Wachsman ED; Lee KT
    Science; 2011 Nov; 334(6058):935-9. PubMed ID: 22096189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.
    Huang TJ; Hsu SH; Wu CY
    Environ Sci Technol; 2012 Feb; 46(4):2324-9. PubMed ID: 22289082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.