These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20818571)

  • 21. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies.
    Dobretsov S; Thomason JC
    Biofouling; 2011 Sep; 27(8):869-80. PubMed ID: 21864210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on stainless steel electrode based on dynamic aluminum liquid corrosion mechanism.
    Hou H; Yang R
    J Environ Sci (China); 2009; 21 Suppl 1():S170-3. PubMed ID: 25084422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the correlation between corrosion resistance and biofouling of thermally sprayed metallic substrata in the field.
    Vinagre PA; Lindén JB; Mardaras E; Pinori E; Svenson J
    Biofouling; 2022 Feb; 38(2):147-161. PubMed ID: 35184621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.
    García S; Trueba A; Vega LM; Madariaga E
    Biofouling; 2016 Nov; 32(10):1185-1193. PubMed ID: 27744709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioassays and field immersion tests: a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups.
    Bressy C; Hellio C; Marechal JP; Tanguy B; Margaillan A
    Biofouling; 2010 Oct; 26(7):769-77. PubMed ID: 20818516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion.
    Landoulsi J; Cooksey KE; Dupres V
    Biofouling; 2011 Nov; 27(10):1109-24. PubMed ID: 22050233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater.
    Eashwar M; Sathish Kumar P; Ravishankar R; Subramanian G
    Biofouling; 2013; 29(2):185-93. PubMed ID: 23330652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings.
    Tribou M; Swain G
    Biofouling; 2010 Jan; 26(1):47-56. PubMed ID: 20390556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.
    Chen G; Beving DE; Bedi RS; Yan YS; Walker SL
    Langmuir; 2009 Feb; 25(3):1620-6. PubMed ID: 19123799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical stimulation and electrode properties. Part 2: pure metal electrodes.
    Stevenson M; Baylor K; Netherton BL; Stecker MM
    Am J Electroneurodiagnostic Technol; 2010 Dec; 50(4):263-96. PubMed ID: 21313789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An analysis of variable dissolution rates of sacrificial zinc anodes: a case study of the Hamble estuary, UK.
    Rees AB; Gallagher A; Comber S; Wright LA
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21422-21433. PubMed ID: 28744681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal treatment as a method to control transfers of invasive biofouling species via vessel sea chests.
    Piola RF; Hopkins GA
    Mar Pollut Bull; 2012 Aug; 64(8):1620-30. PubMed ID: 22732144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(6):527-34. PubMed ID: 26222187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular methods resolve the bacterial composition of natural marine biofilms on galvanically coupled stainless steel cathodes.
    Oldham AL; Steinberg MK; Duncan KE; Makama Z; Beech I
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):167-180. PubMed ID: 28013395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofouling communities on test panels coated with TBT and TBT-free copper based antifouling paints.
    Jelic-Mrcelic G; Sliskovic M; Antolic B
    Biofouling; 2006; 22(5-6):293-302. PubMed ID: 17110353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-demand release of corrosion-inhibiting ions from amorphous Al-Co-Ce alloys.
    Jakab MA; Scully JR
    Nat Mater; 2005 Sep; 4(9):667-70. PubMed ID: 16086020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An impedance study on admiralty brass dezincification originated by microbiologically influenced corrosion.
    Ibars JR; Polo JL; Moreno DA; Ranninger C; Bastidas JM
    Biotechnol Bioeng; 2004 Sep; 87(7):855-62. PubMed ID: 15334412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel.
    de Brito LV; Coutinho R; Cavalcanti EH; Benchimol M
    Biofouling; 2007; 23(3-4):193-201. PubMed ID: 17653930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.