BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 20818578)

  • 1. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations.
    Zhang XJ; Qin HW; Su LM; Qin WC; Zou MY; Sheng LX; Zhao YH; Abraham MH
    Sci Total Environ; 2010 Sep; 408(20):4549-55. PubMed ID: 20673582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of organic chemicals to Tetrahymena pyriformis: effect of polarity and ionization on toxicity.
    Zhao YH; Zhang XJ; Wen Y; Sun FT; Guo Z; Qin WC; Qin HW; Xu JL; Sheng LX; Abraham MH
    Chemosphere; 2010 Mar; 79(1):72-7. PubMed ID: 20079521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Tetrahymena pyriformis toxicity based on hydrophobicity, polarity, ionization and reactivity of class-based compounds.
    Su L; Fu L; He J; Qin W; Sheng L; Abraham MH; Zhao YH
    SAR QSAR Environ Res; 2012 Jul; 23(5-6):537-52. PubMed ID: 22463052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qsar investigation of a large data set for fish, algae and Daphnia toxicity.
    Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT
    SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity assessment of organic pollutants: reliability of bioluminescence inhibition assay and univariate QSAR models using freshly prepared Vibrio fischeri.
    Parvez S; Venkataraman C; Mukherji S
    Toxicol In Vitro; 2008 Oct; 22(7):1806-13. PubMed ID: 18701087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of aquatic experimental versus predicted and extrapolated chronic toxicity data of four structural analogues.
    Dom N; Knapen D; Blust R
    Chemosphere; 2012 Jan; 86(1):56-64. PubMed ID: 21944038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish.
    Tebby C; Mombelli E; Pandard P; Péry AR
    Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on acute toxicity and structure-activity relationship of Daphnia magna exposed to naphthoquinones.
    Song W; Guo J; Ding F; Hu W; Li Z; Gao M
    Environ Toxicol Pharmacol; 2011 Jul; 32(1):102-6. PubMed ID: 21787735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of baseline toxicity of mono-cyclic aromatic compounds by pseudomonas initial oxygen uptake assay.
    Whang TJ; Wang YT; Wu YP; Wang YS; Tsai MC; Huang DS
    SAR QSAR Environ Res; 2005 Jun; 16(3):247-62. PubMed ID: 15804812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay.
    von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G
    Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.
    Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N
    SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationships (QSARs) using the novel marine algal toxicity data of phenols.
    Ertürk MD; Saçan MT; Novic M; Minovski N
    J Mol Graph Model; 2012 Sep; 38():90-100. PubMed ID: 23085159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the toxic mode of action of ester sulphonates using the joint toxicity of mixtures.
    Hodges G; Roberts DW; Marshall SJ; Dearden JC
    Chemosphere; 2006 Jun; 64(1):17-25. PubMed ID: 16457872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the toxicity of substituted phenols to aquatic species and its changes in the stream and effluent waters.
    Lee YG; Hwang SH; Kim SD
    Arch Environ Contam Toxicol; 2006 Feb; 50(2):213-9. PubMed ID: 16392020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and toxicity of hexafluoroarsenate in aquatic organisms.
    Daus B; Weiss H; Altenburger R
    Chemosphere; 2010 Jan; 78(3):307-12. PubMed ID: 19900693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of modes of action among different trophic levels of aquatic organisms for pesticides and medications based on interspecies correlations and excess toxicity: Theoretical consideration.
    Fan LY; Zhu D; Yang Y; Huang Y; Zhang SN; Yan LC; Wang S; Zhao YH
    Ecotoxicol Environ Saf; 2019 Aug; 177():25-31. PubMed ID: 30954009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.