These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20818579)

  • 1. Development of an ecotoxicity QSAR model for the KAshinhou Tool for Ecotoxicity (KATE) system, March 2009 version.
    Furuhama A; Toida T; Nishikawa N; Aoki Y; Yoshioka Y; Shiraishi H
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):403-13. PubMed ID: 20818579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of chemical reaction mechanistic domains to an ecotoxicity QSAR model, the KAshinhou Tool for Ecotoxicity (KATE).
    Furuhama A; Hasunuma K; Aoki Y; Yoshioka Y; Shiraishi H
    SAR QSAR Environ Res; 2011; 22(5-6):505-23. PubMed ID: 21604231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory.
    Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M
    Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols.
    Padmanabhan J; Parthasarathi R; Subramanian V; Chattaraj PK
    Chem Res Toxicol; 2006 Mar; 19(3):356-64. PubMed ID: 16544939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the index of ideality of correlation to improve models of eco-toxicity.
    Toropova AP; Toropov AA
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31771-31775. PubMed ID: 30255265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of jumping fragments in combination with QSARs for the assessment of classification in ecotoxicology.
    Lozano S; Poezevara G; Halm-Lemeille MP; Lescot-Fontaine E; Lepailleur A; Bissell-Siders R; Crémilleux B; Rault S; Cuissart B; Bureau R
    J Chem Inf Model; 2010 Aug; 50(8):1330-9. PubMed ID: 20726596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals.
    Licht O; Weyers A; Nagel R
    Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of ecotoxicity QSAR models based on partial charge descriptors for acrylate and related compounds.
    Furuhama A; Aoki Y; Shiraishi H
    SAR QSAR Environ Res; 2012 Oct; 23(7-8):731-49. PubMed ID: 22967373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSARâ„¢.
    de Haas EM; Eikelboom T; Bouwman T
    SAR QSAR Environ Res; 2011; 22(5-6):545-59. PubMed ID: 21732893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity.
    Colombo A; Benfenati E; Karelson M; Maran U
    Chemosphere; 2008 Jun; 72(5):772-80. PubMed ID: 18471854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicological QSAR modelling of organic chemicals against
    Khan K; Roy K
    SAR QSAR Environ Res; 2019 Sep; 30(9):665-681. PubMed ID: 31474156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. U.S. EPA regulatory perspectives on the use of QSAR for new and existing chemical evaluations.
    Zeeman M; Auer CM; Clements RG; Nabholz JV; Boethling RS
    SAR QSAR Environ Res; 1995; 3(3):179-201. PubMed ID: 8564854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A QSAR for baseline toxicity: validation, domain of application, and prediction.
    Oberg T
    Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotoxicological QSAR modeling of endocrine disruptor chemicals.
    Khan K; Roy K; Benfenati E
    J Hazard Mater; 2019 May; 369():707-718. PubMed ID: 30831523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First report on soil ecotoxicity prediction against Folsomia candida using intelligent consensus predictions and chemical read-across.
    Paul R; Chatterjee M; Roy K
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88302-88317. PubMed ID: 35829883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and QSAR analysis of photoinduced transformation products of neonicotinoids from EU watchlist for ecotoxicological assessment.
    Voigt M; Jaeger M
    Sci Total Environ; 2021 Jan; 751():141634. PubMed ID: 32882550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.