These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20818977)

  • 21. Novel porcine housekeeping genes for real-time RT-PCR experiments normalization in adipose tissue: assessment of leptin mRNA quantity in different pig breeds.
    Piórkowska K; Oczkowicz M; Różycki M; Ropka-Molik K; Piestrzyńska-Kajtoch A
    Meat Sci; 2011 Mar; 87(3):191-5. PubMed ID: 21041039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans.
    Gilligan BC; Shults M; Rhodes RK; Jacobs PG; Brauker JH; Pintar TJ; Updike SJ
    Diabetes Technol Ther; 2004 Jun; 6(3):378-86. PubMed ID: 15198842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous glucose monitoring: long-term implantable sensor approach.
    Daniloff GY
    Diabetes Technol Ther; 1999; 1(3):261-6. PubMed ID: 11475272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional profiling at different sites in lungs of pigs during acute bacterial respiratory infection.
    Mortensen S; Skovgaard K; Hedegaard J; Bendixen C; Heegaard PM
    Innate Immun; 2011 Feb; 17(1):41-53. PubMed ID: 19897530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered gene expression in rat mesenteric tissue following in vivo exposure to a phosphodiesterase 4 inhibitor.
    Daguès N; Pawlowski V; Guigon G; Ledieu D; Sobry C; Hanton G; Freslon JL; Chevalier S
    Toxicol Appl Pharmacol; 2007 Jan; 218(1):52-63. PubMed ID: 17157341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of subcutaneously implanted glucose sensors for continuous monitoring.
    Gerritsen M; Jansen JA; Lutterman JA
    Neth J Med; 1999 Apr; 54(4):167-79. PubMed ID: 10218387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality?
    Rebrin K; Fischer U; Hahn von Dorsche H; von Woetke T; Abel P; Brunstein E
    J Biomed Eng; 1992 Jan; 14(1):33-40. PubMed ID: 1569738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-transplant upregulation of chemokine messenger RNA in non-human primate recipients of intraportal pig islet xenografts.
    Hårdstedt M; Finnegan CP; Kirchhof N; Hyland KA; Wijkstrom M; Murtaugh MP; Hering BJ
    Xenotransplantation; 2005 Jul; 12(4):293-302. PubMed ID: 15943778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diabetes technology and treatments in the paediatric age group.
    Shalitin S; Peter Chase H
    Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of subcutaneously implanted glucose sensors: a review.
    Gerritsen M; Jansen JA; Kros A; Nolte RJ; Lutterman JA
    J Invest Surg; 1998; 11(3):163-74. PubMed ID: 9743484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation.
    Ward WK; House JL; Birck J; Anderson EM; Jansen LB
    Diabetes Technol Ther; 2004 Jun; 6(3):389-401. PubMed ID: 15198844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation.
    Vériter S; Mergen J; Goebbels RM; Aouassar N; Grégoire C; Jordan B; Levêque P; Gallez B; Gianello P; Dufrane D
    Tissue Eng Part A; 2010 May; 16(5):1503-13. PubMed ID: 20001535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies for testing long-term transcutaneous amperometric glucose sensors.
    Long N; Yu B; Moussy Y; Moussy F
    Diabetes Technol Ther; 2005 Dec; 7(6):927-36. PubMed ID: 16386099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting glucose sensor behavior in blood using transport modeling: relative impacts of protein biofouling and cellular metabolic effects.
    Novak MT; Yuan F; Reichert WM
    J Diabetes Sci Technol; 2013 Nov; 7(6):1547-60. PubMed ID: 24351181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential gene expression profiling in whole blood during acute systemic inflammation in lipopolysaccharide-treated rats.
    Fannin RD; Auman JT; Bruno ME; Sieber SO; Ward SM; Tucker CJ; Merrick BA; Paules RS
    Physiol Genomics; 2005 Mar; 21(1):92-104. PubMed ID: 15781589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calibration of the continuous glucose monitoring system for transient glucose monitoring.
    Lesperance LM; Spektor A; McLeod KJ
    Diabetes Technol Ther; 2007 Apr; 9(2):183-90. PubMed ID: 17425445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Permeability of subcutaneous tissues surrounding long-term implants to oxygen.
    Kumosa LS; Routh TL; Lin JT; Lucisano JY; Gough DA
    Biomaterials; 2014 Sep; 35(29):8287-96. PubMed ID: 24998180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulmonary microRNA expression profiling in an immature piglet model of cardiopulmonary bypass-induced acute lung injury.
    Li W; Ma K; Zhang S; Zhang H; Liu J; Wang X; Li S
    Artif Organs; 2015 Apr; 39(4):327-35. PubMed ID: 25347932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.