BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20818999)

  • 1. Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats.
    Filion TM; Li X; Mason-Savas A; Kreider JM; Goldstein SA; Ayers DC; Song J
    Tissue Eng Part A; 2011 Feb; 17(3-4):503-11. PubMed ID: 20818999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vancomycin-bearing synthetic bone graft delivers rhBMP-2 and promotes healing of critical rat femoral segmental defects.
    Skelly JD; Lange J; Filion TM; Li X; Ayers DC; Song J
    Clin Orthop Relat Res; 2014 Dec; 472(12):4015-23. PubMed ID: 25099263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from FlexBone, an elastomeric osteoconductive bone substitute.
    Xu J; Li X; Lian JB; Ayers DC; Song J
    J Orthop Res; 2009 Oct; 27(10):1306-11. PubMed ID: 19350632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications.
    Song J; Xu J; Filion T; Saiz E; Tomsia AP; Lian JB; Stein GS; Ayers DC; Bertozzi CR
    J Biomed Mater Res A; 2009 Jun; 89(4):1098-107. PubMed ID: 18546185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute.
    Li X; Xu J; Filion TM; Ayers DC; Song J
    Clin Orthop Relat Res; 2013 Aug; 471(8):2540-7. PubMed ID: 23070662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect.
    Field JR; McGee M; Wildenauer C; Kurmis A; Margerrison E
    Vet Comp Orthop Traumatol; 2009; 22(2):87-95. PubMed ID: 19290388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents.
    Zhang B; Skelly JD; Maalouf JR; Ayers DC; Song J
    Sci Transl Med; 2019 Jul; 11(502):. PubMed ID: 31341064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects.
    Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE
    J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model.
    Kim J; McBride S; Dean DD; Sylvia VL; Doll BA; Hollinger JO
    Biomed Mater; 2014 Jun; 9(3):035010. PubMed ID: 24784998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment.
    Shih YR; Phadke A; Yamaguchi T; Kang H; Inoue N; Masuda K; Varghese S
    Acta Biomater; 2015 Jun; 19():1-9. PubMed ID: 25805106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of bone-graft substitutes in large bone defects: any specific needs?
    Calori GM; Mazza E; Colombo M; Ripamonti C
    Injury; 2011 Sep; 42 Suppl 2():S56-63. PubMed ID: 21752369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of the Peptigel with Nanofibres in the Bone Defects Healing].
    Srnec R; Divín R; Škorič M; Snášil R; Krbec M; Nečas A
    Acta Chir Orthop Traumatol Cech; 2018; 85(5):359-365. PubMed ID: 30383533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic bone scaffolds and fracture repair.
    Carson JS; Bostrom MP
    Injury; 2007 Mar; 38 Suppl 1():S33-7. PubMed ID: 17383484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histologic analysis of allograft mixed with hydroxyapatite-tricalcium phosphate used in revision femoral impaction bone grafting.
    Fujishiro T; Nishikawa T; Niikura T; Takikawa S; Saegusa Y; Kurosaka M; Bauer TW
    Orthopedics; 2008 Mar; 31(3):277. PubMed ID: 19292232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffolds for bone healing: concepts, materials and evidence.
    Lichte P; Pape HC; Pufe T; Kobbe P; Fischer H
    Injury; 2011 Jun; 42(6):569-73. PubMed ID: 21489531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit.
    Rahimzadeh R; Veshkini A; Sharifi D; Hesaraki S
    Acta Cir Bras; 2012 Feb; 27(2):148-54. PubMed ID: 22378370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering.
    Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE
    J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.
    Kutikov AB; Skelly JD; Ayers DC; Song J
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4890-901. PubMed ID: 25695310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.