These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20819175)

  • 1. Early response of plant cell to carbon deprivation: in vivo 31P-NMR spectroscopy shows a quasi-instantaneous disruption on cytosolic sugars, phosphorylated intermediates of energy metabolism, phosphate partitioning, and intracellular pHs.
    Gout E; Bligny R; Douce R; Boisson AM; Rivasseau C
    New Phytol; 2011 Jan; 189(1):135-47. PubMed ID: 20819175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: an in vivo 31P-nuclear magnetic resonance study using methylphosphonate as a Pi analog.
    Pratt J; Boisson AM; Gout E; Bligny R; Douce R; Aubert S
    Plant Physiol; 2009 Nov; 151(3):1646-57. PubMed ID: 19755536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sucrose starvation on sycamore (Acer pseudoplatanus) cell carbohydrate and Pi status.
    Rébeillé F; Bligny R; Martin JB; Douce R
    Biochem J; 1985 Mar; 226(3):679-84. PubMed ID: 3985940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.
    Gout E; Rébeillé F; Douce R; Bligny R
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4560-7. PubMed ID: 25313036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies.
    Gout E; Boisson A; Aubert S; Douce R; Bligny R
    Plant Physiol; 2001 Feb; 125(2):912-25. PubMed ID: 11161048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple effects of glycerol on plant cell metabolism. Phosphorus-31 nuclear magnetic resonance studies.
    Aubert S; Gout E; Bligny R; Douce R
    J Biol Chem; 1994 Aug; 269(34):21420-7. PubMed ID: 8063774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the cytoplasm and the vacuole phosphate pool in Acer pseudoplatanus cells.
    Rebeille F; Bligny R; Martin JB; Douce R
    Arch Biochem Biophys; 1983 Aug; 225(1):143-8. PubMed ID: 6614914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a flexible balance between the cytosolic and plastidic contributions to carbohydrate oxidation in response to phosphate limitation.
    Masakapalli SK; Bryant FM; Kruger NJ; Ratcliffe RG
    Plant J; 2014 Jun; 78(6):964-77. PubMed ID: 24674596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 31P-NMR study of phosphate transport and compartmentation in Candida utilis.
    Bourne RM
    Biochim Biophys Acta; 1990 Oct; 1055(1):1-9. PubMed ID: 2223870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ethanol on hepatic energy metabolism and intracellular pH in chronically ethanol-treated rats. A 31P NMR study of normoxic or hypoxic perfused liver.
    Desmoulin F; Canioni P; Masson S; Gérolami A; Cozzone PJ
    NMR Biomed; 1990 Jun; 3(3):132-8. PubMed ID: 2386660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuolar function in the phosphate homeostasis of the yeast Saccharomyces cerevisiae.
    Shirahama K; Yazaki Y; Sakano K; Wada Y; Ohsumi Y
    Plant Cell Physiol; 1996 Dec; 37(8):1090-3. PubMed ID: 9032964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus-31 nuclear-magnetic-resonance study of phosphorylated metabolites compartmentation, intracellular pH and phosphorylation state during normoxia, hypoxia and ethanol perfusion, in the perfused rat liver.
    Desmoulin F; Cozzone PJ; Canioni P
    Eur J Biochem; 1987 Jan; 162(1):151-9. PubMed ID: 3816778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transsarcolemmal movement of inorganic phosphate in glucose-perfused rat heart: a 31P nuclear magnetic resonance spectroscopic study.
    Polgreen KE; Kemp GJ; Clarke K; Radda GK
    J Mol Cell Cardiol; 1994 Feb; 26(2):219-28. PubMed ID: 8006983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical changes during sucrose deprivation in higher plant cells.
    Journet EP; Bligny R; Douce R
    J Biol Chem; 1986 Mar; 261(7):3193-9. PubMed ID: 3005285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium transport and phosphorus metabolism in sodium-loaded yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo.
    Höfeler H; Jensen D; Pike MM; Delayre JL; Cirillo VP; Springer CS; Fossel ET; Balschi JA
    Biochemistry; 1987 Aug; 26(16):4953-62. PubMed ID: 3311159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and phosphorylation of choline in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies.
    Bligny R; Foray MF; Roby C; Douce R
    J Biol Chem; 1989 Mar; 264(9):4888-95. PubMed ID: 2925673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus-31 nuclear magnetic resonance study of energy metabolism in intact slow- and fast-twitch muscles of rats.
    Azuma Y; Manabe N; Kawai F; Kanamori M; Miyamoto H
    J Anim Sci; 1994 Jan; 72(1):103-8. PubMed ID: 8138476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular applications of 31P and 13C nuclear magnetic resonance.
    Shulman RG; Brown TR; Ugurbil K; Ogawa S; Cohen SM; den Hollander JA
    Science; 1979 Jul; 205(4402):160-6. PubMed ID: 36664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study.
    Gilles RJ; D'Orio V; Ciancabilla F; Carlier PG
    Crit Care Med; 1994 Mar; 22(3):499-505. PubMed ID: 8125002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus-31 nuclear magnetic resonance of C6 glioma cells and rat astrocytes. Evidence for a modification of the longitudinal relaxation time of ATP and Pi during glucose starvation.
    Pianet I; Merle M; Labouesse J; Canioni P
    Eur J Biochem; 1991 Jan; 195(1):87-95. PubMed ID: 1991480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.