BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20819357)

  • 1. Inactivation of a cold-induced putative rna helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance.
    Azizoglu RO; Kathariou S
    J Food Prot; 2010 Aug; 73(8):1474-9. PubMed ID: 20819357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of growth temperature in freeze-thaw tolerance of Listeria spp.
    Azizoglu RO; Osborne J; Wilson S; Kathariou S
    Appl Environ Microbiol; 2009 Aug; 75(16):5315-20. PubMed ID: 19542335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365.
    Azizoglu RO; Kathariou S
    Appl Environ Microbiol; 2010 Nov; 76(21):6998-7003. PubMed ID: 20817809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of curing method and freeze-thawing on subsequent growth of Listeria monocytogenes on cold-smoked salmon.
    Kang J; Tang S; Liu RH; Wiedmann M; Boor KJ; Bergholz TM; Wang S
    J Food Prot; 2012 Sep; 75(9):1619-26. PubMed ID: 22947469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of growth temperature and agar versus liquid media on freeze-thaw tolerance of Yersinia enterocolitica.
    Azizoglu RO; Kathariou S
    Foodborne Pathog Dis; 2010 Sep; 7(9):1125-8. PubMed ID: 20528173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposon-induced mutants of Listeria monocytogenes incapable of growth at low temperature (4 degrees C).
    Zheng W; Kathariou S
    FEMS Microbiol Lett; 1994 Sep; 121(3):287-91. PubMed ID: 7926683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth.
    Chan YC; Hu Y; Chaturongakul S; Files KD; Bowen BM; Boor KJ; Wiedmann M
    J Food Prot; 2008 Feb; 71(2):420-5. PubMed ID: 18326199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Cadmium Resistance Determinant in Listeria monocytogenes.
    Parsons C; Lee S; Jayeola V; Kathariou S
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986731
    [No Abstract]   [Full Text] [Related]  

  • 9. A cold-sensitive Listeria monocytogenes mutant has a transposon insertion in a gene encoding a putative membrane protein and shows altered (p)ppGpp levels.
    Liu S; Bayles DO; Mason TM; Wilkinson BJ
    Appl Environ Microbiol; 2006 Jun; 72(6):3955-9. PubMed ID: 16751502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3°C.
    Markkula A; Mattila M; Lindström M; Korkeala H
    Environ Microbiol; 2012 Aug; 14(8):2223-32. PubMed ID: 22564273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures.
    Seel W; Flegler A; Zunabovic-Pichler M; Lipski A
    J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862
    [No Abstract]   [Full Text] [Related]  

  • 12. Fate of Listeria monocytogenes during freezing, thawing and home storage of frankfurters.
    Simpson Beauchamp C; Byelashov OA; Geornaras I; Kendall PA; Scanga JA; Belk KE; Smith GC; Sofos JN
    Food Microbiol; 2010 Feb; 27(1):144-9. PubMed ID: 19913705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold stress tolerance of Listeria monocytogenes: A review of molecular adaptive mechanisms and food safety implications.
    Tasara T; Stephan R
    J Food Prot; 2006 Jun; 69(6):1473-84. PubMed ID: 16786878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature.
    Chassaing D; Auvray F
    FEMS Microbiol Lett; 2007 Oct; 275(1):31-7. PubMed ID: 17666069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures.
    Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ
    Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for the reduction of numbers of Listeria monocytogenes cells by freezing in combination with an essential oil in bacteriological media.
    Cressy HK; Jerrett AR; Osborne CM; Bremer PJ
    J Food Prot; 2003 Mar; 66(3):390-5. PubMed ID: 12636290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Listeria monocytogenes mutants with altered growth phenotypes at refrigeration temperature and high salt concentrations.
    Burall LS; Laksanalamai P; Datta AR
    Appl Environ Microbiol; 2012 Feb; 78(4):1265-72. PubMed ID: 22179239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress.
    Miladi H; Elabed H; Ben Slama R; Rhim A; Bakhrouf A
    Arch Microbiol; 2017 Mar; 199(2):259-265. PubMed ID: 27695911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of processing steps in cold-smoked salmon production on survival and growth of persistent and presumed non-persistent Listeria monocytogenes.
    Porsby CH; Vogel BF; Mohr M; Gram L
    Int J Food Microbiol; 2008 Mar; 122(3):287-95. PubMed ID: 18279988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.