These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 20819806)

  • 21. Intra- and interspecific variation in the responses of insect phenology to climate.
    Gutiérrez D; Wilson RJ
    J Anim Ecol; 2021 Jan; 90(1):248-259. PubMed ID: 32961581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Earlier migration timing, decreasing phenotypic variation, and biocomplexity in multiple salmonid species.
    Kovach RP; Joyce JE; Echave JD; Lindberg MS; Tallmon DA
    PLoS One; 2013; 8(1):e53807. PubMed ID: 23326513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resource subsidies between stream and terrestrial ecosystems under global change.
    Larsen S; Muehlbauer JD; Marti E
    Glob Chang Biol; 2016 Jul; 22(7):2489-504. PubMed ID: 26649817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.
    Searle KR; Rice MB; Anderson CR; Bishop C; Hobbs NT
    Oecologia; 2015 Oct; 179(2):377-91. PubMed ID: 26009244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem.
    Pendleton DE; Tingley MW; Ganley LC; Friedland KD; Mayo C; Brown MW; McKenna BE; Jordaan A; Staudinger MD
    Glob Chang Biol; 2022 Aug; 28(16):4989-5005. PubMed ID: 35672922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology.
    Jerome DK; Petry WK; Mooney KA; Iler AM
    Glob Chang Biol; 2021 Oct; 27(20):5054-5069. PubMed ID: 34265142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoperiod controls vegetation phenology across Africa.
    Adole T; Dash J; Rodriguez-Galiano V; Atkinson PM
    Commun Biol; 2019; 2():391. PubMed ID: 31667365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenological niches and the future of invaded ecosystems with climate change.
    Wolkovich EM; Cleland EE
    AoB Plants; 2014 Mar; 6():. PubMed ID: 24876295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring Conditions That Strengthen or Weaken the Ecological and Evolutionary Consequences of Phenological Synchrony.
    Carter SK; Rudolf VHW
    Am Nat; 2022 Nov; 200(5):E189-E206. PubMed ID: 36260851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flowering time advances since the 1970s in a sagebrush steppe community: Implications for management and restoration.
    Bloom TDS; O'Leary DS; Riginos C
    Ecol Appl; 2022 Sep; 32(6):e2583. PubMed ID: 35333428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120489. PubMed ID: 23836793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future.
    Severson JP; Johnson HE; Arthur SM; Leacock WB; Suitor MJ
    Glob Chang Biol; 2021 Oct; 27(19):4546-4563. PubMed ID: 33993595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecological and methodological drivers of species' distribution and phenology responses to climate change.
    Brown CJ; O'Connor MI; Poloczanska ES; Schoeman DS; Buckley LB; Burrows MT; Duarte CM; Halpern BS; Pandolfi JM; Parmesan C; Richardson AJ
    Glob Chang Biol; 2016 Apr; 22(4):1548-60. PubMed ID: 26661135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant phenological responses to experimental warming-A synthesis.
    Stuble KL; Bennion LD; Kuebbing SE
    Glob Chang Biol; 2021 Sep; 27(17):4110-4124. PubMed ID: 33993588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forecasting phenology under global warming.
    Ibáñez I; Primack RB; Miller-Rushing AJ; Ellwood E; Higuchi H; Lee SD; Kobori H; Silander JA
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3247-60. PubMed ID: 20819816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precipitation versus temperature as phenology controls in drylands.
    Currier CM; Sala OE
    Ecology; 2022 Nov; 103(11):e3793. PubMed ID: 35724971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.
    Xie Y; Wang X; Silander JA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13585-90. PubMed ID: 26483475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.