These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 20819816)
1. Forecasting phenology under global warming. Ibáñez I; Primack RB; Miller-Rushing AJ; Ellwood E; Higuchi H; Lee SD; Kobori H; Silander JA Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3247-60. PubMed ID: 20819816 [TBL] [Abstract][Full Text] [Related]
2. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Fu YH; Piao S; Delpierre N; Hao F; Hänninen H; Liu Y; Sun W; Janssens IA; Campioli M Glob Chang Biol; 2018 May; 24(5):2159-2168. PubMed ID: 29245174 [TBL] [Abstract][Full Text] [Related]
3. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
4. Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Zohner CM; Renner SS Oecologia; 2019 Feb; 189(2):549-561. PubMed ID: 30684009 [TBL] [Abstract][Full Text] [Related]
5. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Chen L; Huang JG; Ma Q; Hänninen H; Tremblay F; Bergeron Y Glob Chang Biol; 2019 Mar; 25(3):997-1004. PubMed ID: 30358002 [TBL] [Abstract][Full Text] [Related]
6. Late to bed, late to rise-Warmer autumn temperatures delay spring phenology by delaying dormancy. Beil I; Kreyling J; Meyer C; Lemcke N; Malyshev AV Glob Chang Biol; 2021 Nov; 27(22):5806-5817. PubMed ID: 34431180 [TBL] [Abstract][Full Text] [Related]
7. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming. Meng L; Zhou Y; Gu L; Richardson AD; Peñuelas J; Fu Y; Wang Y; Asrar GR; De Boeck HJ; Mao J; Zhang Y; Wang Z Glob Chang Biol; 2021 Jun; 27(12):2914-2927. PubMed ID: 33651464 [TBL] [Abstract][Full Text] [Related]
8. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Primack RB; Laube J; Gallinat AS; Menzel A Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135 [TBL] [Abstract][Full Text] [Related]
9. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538 [TBL] [Abstract][Full Text] [Related]
10. Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan. Doi H Int J Biometeorol; 2012 Sep; 56(5):895-902. PubMed ID: 21947335 [TBL] [Abstract][Full Text] [Related]
11. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA. Pearson KD Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127 [TBL] [Abstract][Full Text] [Related]
12. Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. Yang L; Zhao S; Liu S Glob Chang Biol; 2023 Aug; 29(15):4383-4396. PubMed ID: 37249105 [TBL] [Abstract][Full Text] [Related]
13. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. Tourville JC; Murray GLD; Nelson SJ Ecology; 2024 Oct; 105(10):e4403. PubMed ID: 39205387 [TBL] [Abstract][Full Text] [Related]
14. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. Wang J; Xi Z; He X; Chen S; Rossi S; Smith NG; Liu J; Chen L Glob Chang Biol; 2021 Oct; 27(20):5084-5093. PubMed ID: 34263513 [TBL] [Abstract][Full Text] [Related]
15. Poleward shifts in the maximum of spring phenological responsiveness of Ginkgo biloba to temperature in China. Wu Z; Fu YH; Crowther TW; Wang S; Gong Y; Zhang J; Zhao YP; Janssens I; Penuelas J; Zohner CM New Phytol; 2023 Nov; 240(4):1421-1432. PubMed ID: 37632265 [TBL] [Abstract][Full Text] [Related]
16. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes. Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654 [TBL] [Abstract][Full Text] [Related]
17. A century of climate warming results in growing season extension: Delayed autumn leaf phenology in north central North America. Calinger K; Curtis P PLoS One; 2023; 18(3):e0282635. PubMed ID: 36867631 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal variations in leaf-out phenology of typical European tree species and their responses to climate change. Lin SZ; Ge QS; Wang HJ Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):788-798. PubMed ID: 33754543 [TBL] [Abstract][Full Text] [Related]
19. Phenological response to climate variation in a northern red oak plantation: Links to survival and productivity. Knott JA; Liang L; Dukes JS; Swihart RK; Fei S Ecology; 2023 Mar; 104(3):e3940. PubMed ID: 36457179 [TBL] [Abstract][Full Text] [Related]