BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20820096)

  • 1. The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye.
    Raut SL; Kirthivasan B; Bommana MM; Squillante E; Sadoqi M
    Nanotechnology; 2010 Oct; 21(39):395102. PubMed ID: 20820096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system.
    Kirthivasan B; Singh D; Bommana MM; Raut SL; Squillante E; Sadoqi M
    Nanotechnology; 2012 Jun; 23(25):255102. PubMed ID: 22652439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release.
    Saxena V; Sadoqi M; Shao J
    Int J Pharm; 2004 Jul; 278(2):293-301. PubMed ID: 15196634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents.
    Manchanda R; Fernandez-Fernandez A; Nagesetti A; McGoron AJ
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):260-7. PubMed ID: 19775872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles.
    Kumar PS; Ramakrishna S; Saini TR; Diwan PV
    Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles.
    Ngaboni Okassa L; Marchais H; Douziech-Eyrolles L; Cohen-Jonathan S; Soucé M; Dubois P; Chourpa I
    Int J Pharm; 2005 Sep; 302(1-2):187-96. PubMed ID: 16099119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of indocyanine green by encapsulation within micellar systems.
    Kirchherr AK; Briel A; Mäder K
    Mol Pharm; 2009; 6(2):480-91. PubMed ID: 19228053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice.
    Saxena V; Sadoqi M; Shao J
    Int J Pharm; 2006 Feb; 308(1-2):200-4. PubMed ID: 16386861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indocyanine green nanoparticles useful for photomedicine.
    Gomes AJ; Lunardi LO; Marchetti JM; Lunardi CN; Tedesco AC
    Photomed Laser Surg; 2006 Aug; 24(4):514-21. PubMed ID: 16942434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging.
    Zheng C; Zheng M; Gong P; Jia D; Zhang P; Shi B; Sheng Z; Ma Y; Cai L
    Biomaterials; 2012 Aug; 33(22):5603-9. PubMed ID: 22575835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of highly-magnetic biodegradable poly(d,l-lactide-co-glycolide) nanospheres.
    Liu X; Kaminski MD; Chen H; Torno M; Taylor L; Rosengart AJ
    J Control Release; 2007 May; 119(1):52-8. PubMed ID: 17350131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy.
    Thamake SI; Raut SL; Ranjan AP; Gryczynski Z; Vishwanatha JK
    Nanotechnology; 2011 Jan; 22(3):035101. PubMed ID: 21149963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging.
    Kim TH; Chen Y; Mount CW; Gombotz WR; Li X; Pun SH
    Pharm Res; 2010 Sep; 27(9):1900-13. PubMed ID: 20568000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes.
    Cheng FY; Wang SP; Su CH; Tsai TL; Wu PC; Shieh DB; Chen JH; Hsieh PC; Yeh CS
    Biomaterials; 2008 May; 29(13):2104-12. PubMed ID: 18276001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles.
    Okassa LN; Marchais H; Douziech-Eyrolles L; Hervé K; Cohen-Jonathan S; Munnier E; Soucé M; Linassier C; Dubois P; Chourpa I
    Eur J Pharm Biopharm; 2007 Aug; 67(1):31-8. PubMed ID: 17289360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin.
    Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP
    Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of poly(DL-lactide-co-glycolide) nanoparticles for siRNA delivery.
    Cun D; Foged C; Yang M; Frøkjaer S; Nielsen HM
    Int J Pharm; 2010 May; 390(1):70-5. PubMed ID: 19836438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles.
    Hong Z; Zhang P; Liu A; Chen L; Chen X; Jing X
    J Biomed Mater Res A; 2007 Jun; 81(3):515-22. PubMed ID: 17133447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.