These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 20820214)

  • 1. Fourier-transform absorption spectroscopy in reciprocating engines.
    Rein KD; Sanders ST
    Appl Opt; 2010 Sep; 49(25):4728-34. PubMed ID: 20820214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines.
    Joshi S; Olsen DB; Dumitrescu C; Puzinauskas PV; Yalin AP
    Appl Spectrosc; 2009 May; 63(5):549-54. PubMed ID: 19470212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy.
    Kino S; Matsuura Y
    Appl Spectrosc; 2007 Dec; 61(12):1334-7. PubMed ID: 18198025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose.
    Kokot S; Czarnik-Matusewicz B; Ozaki Y
    Biopolymers; 2002; 67(6):456-69. PubMed ID: 12209453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.
    Aleiferis P; Charalambides A; Hardalupas Y; Soulopoulos N; Taylor AM; Urata Y
    Appl Opt; 2015 May; 54(14):4566-79. PubMed ID: 25967518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier Transform Spectroscopy of the O(2) Herzberg Bands. III. Absorption Cross Sections of the Collision-Induced Bands and of the Herzberg Continuum.
    Fally S; Vandaele AC; Carleer M; Hermans C; Jenouvrier A; Mérienne M; Coquart B; Colin R
    J Mol Spectrosc; 2000 Nov; 204(1):10-20. PubMed ID: 11034837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of the in situ Fourier transform infrared absorption and emission spectrum of gas-phase SiO (Deltav = 1 and 2) produced in Si-N-O fiber growth.
    Martin PA; Daum R; Beil A; Vogt U; Vital A; Graehlert W; Leparoux M; Hopfe V
    Appl Spectrosc; 2004 May; 58(5):543-51. PubMed ID: 15165330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra.
    Schreiber J; Blumenstock T; Fischer H
    Appl Opt; 1996 Nov; 35(31):6203-9. PubMed ID: 21127641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines.
    Cundy M; Schucht T; Thiele O; Sick V
    Appl Opt; 2009 Feb; 48(4):B94-B104. PubMed ID: 19183588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A novel calibration technique for quantitative analysis of FTIR spectra].
    Lian CZ; Lü ZA; Ji CS; Li DK; Xu XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1323-6. PubMed ID: 15762466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting attenuated total reflection-Fourier transform infrared spectra for water vapor and carbon dioxide.
    Bruun SW; Kohler A; Adt I; Sockalingum GD; Manfait M; Martens H
    Appl Spectrosc; 2006 Sep; 60(9):1029-39. PubMed ID: 17002829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond optical thermometry of protein in H2O.
    Marcus GA; Schwettman HA
    J Phys Chem B; 2007 Mar; 111(11):3048-54. PubMed ID: 17388435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical sensor system for time-resolved quantification of methane densities in CH
    Golibrzuch K; Digulla FE; Bauke S; Wackerbarth H; Thiele O; Berg T
    Appl Opt; 2017 Aug; 56(22):6049-6058. PubMed ID: 29047794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stellar and 0ther high-temperature molecules.
    Weltner W
    Science; 1967 Jan; 155(3759):155-64. PubMed ID: 17738213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity enhanced spectroscopy of high-temperature H(2)o in the near-infrared using a supercontinuum light source.
    Watt RS; Laurila T; Kaminski CF; Hult J
    Appl Spectrosc; 2009 Dec; 63(12):1389-95. PubMed ID: 20030985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm(-1).
    Max JJ; Chapados C
    J Chem Phys; 2009 Nov; 131(18):184505. PubMed ID: 19916610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fourier transform infrared spectroscopy study on the protein secondary structure of photosystem II reaction center].
    Lu W; Xu CH; Li R; Chen ZH; Yuan XZ; Shi GL; Shen XC; Shen YG; Lu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Oct; 22(5):749-51. PubMed ID: 12938419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated gas analyzer for complete monitoring of turbine engine test cells.
    Markham JR; Bush PM; Bonzani PJ; Scire JJ; Zaccardi VA; Jalbert PA; Bryant MD; Gardner DG
    Appl Spectrosc; 2004 Jan; 58(1):130-6. PubMed ID: 14727730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-infrared absorption of water clusters by first-principles molecular dynamics.
    Lee MS; Baletto F; Kanhere DG; Scandolo S
    J Chem Phys; 2008 Jun; 128(21):214506. PubMed ID: 18537432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of optical band gap and FTIR spectroscopy of Li2O.Bi2O3.P2O5 glasses.
    Rani S; Sanghi S; Agarwal A; Seth VP
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):673-7. PubMed ID: 19713150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.