BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 20820218)

  • 1. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.
    Watanabe Y; Maeno S; Aoshima K; Hasegawa H; Koseki H
    Appl Opt; 2010 Sep; 49(25):4756-62. PubMed ID: 20820218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y; Itagaki T
    J Biomed Opt; 2009; 14(6):060506. PubMed ID: 20059237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning.
    Wang RK
    Phys Med Biol; 2007 Oct; 52(19):5897-907. PubMed ID: 17881807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S; Bradu A; Podoleanu AG
    J Biomed Opt; 2010; 15(3):030511. PubMed ID: 20614994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.
    Chan KK; Tang S
    Opt Express; 2011 Dec; 19(27):26891-904. PubMed ID: 22274272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation.
    Fan C; Yao G
    Opt Express; 2010 Mar; 18(7):7281-7. PubMed ID: 20389749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW; Reynolds JJ; Marks DL; Boppart SA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for suppressing the mirror image in Fourier-domain optical coherence tomography.
    Wu CT; Chi TT; Lee CK; Kiang YW; Yang CC; Chiang CP
    Opt Lett; 2011 Aug; 36(15):2889-91. PubMed ID: 21808348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.
    Zhang K; Kang JU
    Opt Express; 2010 May; 18(11):11772-84. PubMed ID: 20589038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical coherence tomography by using frequency measurements in wavelength domain.
    Seck HL; Zhang Y; Soh YC
    Opt Express; 2011 Jan; 19(2):1324-34. PubMed ID: 21263673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal signal processing of nonlinearity in swept-source and spectral-domain optical coherence tomography.
    Vergnole S; Lévesque D; Bizheva K; Lamouche G
    Appl Opt; 2012 Apr; 51(11):1701-8. PubMed ID: 22505160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J; Sugden K; Tomlins PH
    J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography.
    Vergnole S; Lévesque D; Lamouche G
    Opt Express; 2010 May; 18(10):10446-61. PubMed ID: 20588899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.
    Watanabe Y; Takahashi Y; Numazawa H
    J Biomed Opt; 2014 Feb; 19(2):021105. PubMed ID: 23846119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    Opt Express; 2014 Jun; 22(12):14871-84. PubMed ID: 24977582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system].
    Liu Q; Li Y; Xu Q; Zhao J; Wang L; Gao Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan; 37(1):1-5. PubMed ID: 23668032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image formation and tomogram reconstruction in optical coherence microscopy.
    Villiger M; Lasser T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2216-28. PubMed ID: 20922012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.