These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20820550)

  • 21. pH-Responsive Core-Shell Microparticles Prepared by a Microfluidic Chip for the Encapsulation and Controlled Release of Procyanidins.
    Tie S; Su W; Zhang X; Chen Y; Zhao X; Tan M
    J Agric Food Chem; 2021 Feb; 69(5):1466-1477. PubMed ID: 33507744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled drug release from porous materials by plasma polymer deposition.
    Simovic S; Losic D; Vasilev K
    Chem Commun (Camb); 2010 Feb; 46(8):1317-9. PubMed ID: 20449289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of water-ionic liquid droplet pairs in soybean oil on microfluidic chip.
    Feng X; Yi Y; Yu X; Pang DW; Zhang ZL
    Lab Chip; 2010 Feb; 10(3):313-9. PubMed ID: 20091002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.
    Liu D; Zhang H; Herranz-Blanco B; Mäkilä E; Lehto VP; Salonen J; Hirvonen J; Santos HA
    Small; 2014 May; 10(10):2029-38. PubMed ID: 24616278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell immersion and cell dipping in microfluidic devices.
    Seger U; Gawad S; Johann R; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):148-51. PubMed ID: 15052356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.
    Wang C; He C; Tong Z; Liu X; Ren B; Zeng F
    Int J Pharm; 2006 Feb; 308(1-2):160-7. PubMed ID: 16359836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.
    Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC
    Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel pH-dependent gradient-release delivery system for nitrendipine: I. Manufacturing, evaluation in vitro and bioavailability in healthy dogs.
    Yang M; Cui F; You B; You J; Wang L; Zhang L; Kawashima Y
    J Control Release; 2004 Aug; 98(2):219-29. PubMed ID: 15262414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of supramolecular hydrogel microspheres via microfluidics.
    Chen W; Yang Y; Rinadi C; Zhou D; Shen AQ
    Lab Chip; 2009 Oct; 9(20):2947-51. PubMed ID: 19789748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release.
    Li ZZ; Xu SA; Wen LX; Liu F; Liu AQ; Wang Q; Sun HY; Yu W; Chen JF
    J Control Release; 2006 Mar; 111(1-2):81-8. PubMed ID: 16388871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microspheres of corn protein, zein, for an ivermectin drug delivery system.
    Liu X; Sun Q; Wang H; Zhang L; Wang JY
    Biomaterials; 2005 Jan; 26(1):109-15. PubMed ID: 15193886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: influence of formulation variables and modelling of agglomerate growth.
    Pauli-Bruns A; Knop K; Lippold BC
    Eur J Pharm Biopharm; 2010 Mar; 74(3):503-12. PubMed ID: 20026401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characteristics of interferon-alpha poly(lactic-co-glycolic acid) microspheres.
    Yang F; Song FL; Pan YF; Wang ZY; Yang YQ; Zhao YM; Liang SZ; Zhang YM
    J Microencapsul; 2010; 27(2):133-41. PubMed ID: 20121486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sucrose esters with various hydrophilic-lipophilic properties: novel controlled release agents for oral drug delivery matrix tablets prepared by direct compaction.
    Chansanroj K; Betz G
    Acta Biomater; 2010 Aug; 6(8):3101-9. PubMed ID: 20132913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous-flow pI-based sorting of proteins and peptides in a microfluidic chip using diffusion potential.
    Song YA; Hsu S; Stevens AL; Han J
    Anal Chem; 2006 Jun; 78(11):3528-36. PubMed ID: 16737204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.