BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20820672)

  • 1. Diffusion pathways of oxygen species in the phototoxic fluorescent protein KillerRed.
    Roy A; Carpentier P; Bourgeois D; Field M
    Photochem Photobiol Sci; 2010 Oct; 9(10):1342-50. PubMed ID: 20820672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore.
    Jiménez-Banzo A; Ragàs X; Abbruzzetti S; Viappiani C; Campanini B; Flors C; Nonell S
    Photochem Photobiol Sci; 2010 Oct; 9(10):1336-41. PubMed ID: 20672172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically encoded photosensitizer.
    Bulina ME; Chudakov DM; Britanova OV; Yanushevich YG; Staroverov DB; Chepurnykh TV; Merzlyak EM; Shkrob MA; Lukyanov S; Lukyanov KA
    Nat Biotechnol; 2006 Jan; 24(1):95-9. PubMed ID: 16369538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed.
    Bulina ME; Lukyanov KA; Britanova OV; Onichtchouk D; Lukyanov S; Chudakov DM
    Nat Protoc; 2006; 1(2):947-53. PubMed ID: 17406328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the phototoxicity of the fluorescent protein KillerRed.
    Carpentier P; Violot S; Blanchoin L; Bourgeois D
    FEBS Lett; 2009 Sep; 583(17):2839-42. PubMed ID: 19646983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy.
    Silva EF; Serpa C; Dabrowski JM; Monteiro CJ; Formosinho SJ; Stochel G; Urbanska K; Simões S; Pereira MM; Arnaut LG
    Chemistry; 2010 Aug; 16(30):9273-86. PubMed ID: 20572171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent proteins as light-inducible photochemical partners.
    Lukyanov KA; Serebrovskaya EO; Lukyanov S; Chudakov DM
    Photochem Photobiol Sci; 2010 Oct; 9(10):1301-6. PubMed ID: 20672171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proton transfer network that generates deprotonated tyrosine is a key to producing reactive oxygen species in phototoxic KillerRed protein.
    Lee W; Kim I; Rhee YM
    Phys Chem Chem Phys; 2018 Aug; 20(34):22342-22350. PubMed ID: 30128469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of singlet oxygen production in the reaction of superoxide with hydrogen peroxide using a selective chemiluminescent probe.
    MacManus-Spencer LA; McNeill K
    J Am Chem Soc; 2005 Jun; 127(25):8954-5. PubMed ID: 15969564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet oxygen induces fluorescent proteins dimerization.
    Valencia-Perez AZ; Heyne B
    Chembiochem; 2010 Nov; 11(17):2384-8. PubMed ID: 20979079
    [No Abstract]   [Full Text] [Related]  

  • 11. Photodynamic Treatment of Tumor with Bacteria Expressing KillerRed.
    Yan L; Kanada M; Zhang J; Okazaki S; Terakawa S
    PLoS One; 2015; 10(7):e0131518. PubMed ID: 26213989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy.
    Liao ZX; Li YC; Lu HM; Sung HW
    Biomaterials; 2014 Jan; 35(1):500-8. PubMed ID: 24112805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of photosensitized singlet oxygen production by a fluorescent protein.
    Ragàs X; Cooper LP; White JH; Nonell S; Flors C
    Chemphyschem; 2011 Jan; 12(1):161-5. PubMed ID: 21226197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore of an Enhanced Green Fluorescent Protein Can Play a Photoprotective Role Due to Photobleaching.
    Krasowska J; Pierzchała K; Bzowska A; Forró L; Sienkiewicz A; Wielgus-Kutrowska B
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed.
    Pletnev S; Gurskaya NG; Pletneva NV; Lukyanov KA; Chudakov DM; Martynov VI; Popov VO; Kovalchuk MV; Wlodawer A; Dauter Z; Pletnev V
    J Biol Chem; 2009 Nov; 284(46):32028-39. PubMed ID: 19737938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low-density lipoproteins: implications for photodynamic therapy.
    Martins J; Almeida L; Laranjinha J
    Photochem Photobiol; 2004; 80(2):267-73. PubMed ID: 15362945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural anthraquinones probed as Type I and Type II photosensitizers: singlet oxygen and superoxide anion production.
    Montoya SC; Comini LR; Sarmiento M; Becerra C; Albesa I; Argüello GA; Cabrera JL
    J Photochem Photobiol B; 2005 Jan; 78(1):77-83. PubMed ID: 15629252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential limitations in the use of KillerRed for fluorescence microscopy.
    Nordgren M; Wang B; Apanasets O; Brees C; Veldhoven PP; Fransen M
    J Microsc; 2012 Mar; 245(3):229-35. PubMed ID: 22091555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.
    Fukuzumi S; Ohkubo K; Zheng X; Chen Y; Pandey RK; Zhan R; Kadish KM
    J Phys Chem B; 2008 Mar; 112(9):2738-46. PubMed ID: 18254618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.
    Cordeiro RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):438-44. PubMed ID: 24095673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.