These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 20820717)

  • 1. Nano active materials for lithium-ion batteries.
    Wang Y; Li H; He P; Hosono E; Zhou H
    Nanoscale; 2010 Aug; 2(8):1294-305. PubMed ID: 20820717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomaterials for rechargeable lithium batteries.
    Bruce PG; Scrosati B; Tarascon JM
    Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.
    Zhou S; Yang X; Lin Y; Xie J; Wang D
    ACS Nano; 2012 Jan; 6(1):919-24. PubMed ID: 22176699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries.
    Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT
    Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries.
    Wang XL; Han WQ; Chen J; Graetz J
    ACS Appl Mater Interfaces; 2010 May; 2(5):1548-51. PubMed ID: 20443576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Cu4V2.15O9.38 micro-/nanostructures: a lithium intercalating electrode material.
    Zhou L; Cui W; Wu J; Zhao Q; Li H; Xia Y; Wang Y; Yu C
    Nanoscale; 2011 Mar; 3(3):999-1003. PubMed ID: 21132216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.
    Nam KT; Kim DW; Yoo PJ; Chiang CY; Meethong N; Hammond PT; Chiang YM; Belcher AM
    Science; 2006 May; 312(5775):885-8. PubMed ID: 16601154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.