These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20820931)

  • 1. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae.
    Griffiths MJ; van Hille RP; Harrison ST
    Lipids; 2010 Nov; 45(11):1053-60. PubMed ID: 20820931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of total fatty acids in microalgae: comparison of extraction and transesterification methods.
    Cavonius LR; Carlsson NG; Undeland I
    Anal Bioanal Chem; 2014 Nov; 406(28):7313-22. PubMed ID: 25224639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of fatty acid content and composition in microalgae.
    Breuer G; Evers WA; de Vree JH; Kleinegris DM; Martens DE; Wijffels RH; Lamers PP
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of direct transesterification of microalgae using microwave irradiation.
    Teo CL; Idris A
    Bioresour Technol; 2014 Dec; 174():281-6. PubMed ID: 25463809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total Fatty Acid Content Determination of Whole Microalgal Biomass Using In Situ Transesterification.
    Van Wychen S; Laurens LML
    Methods Mol Biol; 2020; 1980():203-214. PubMed ID: 29199376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification.
    Laurens LM; Quinn M; Van Wychen S; Templeton DW; Wolfrum EJ
    Anal Bioanal Chem; 2012 Apr; 403(1):167-78. PubMed ID: 22349344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suitability of Soxhlet extraction to quantify microalgal Fatty acids as determined by comparison with in situ transesterification.
    McNichol J; MacDougall KM; Melanson JE; McGinn PJ
    Lipids; 2012 Feb; 47(2):195-207. PubMed ID: 22057577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach.
    Dong T; Yu L; Gao D; Yu X; Miao C; Zheng Y; Lian J; Li T; Chen S
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10237-47. PubMed ID: 26276545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.
    Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E
    Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae
    Zghaibi N; Omar R; Kamal SMM; Biak DRA; Harun R
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31590304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods.
    Lage S; Gentili FG
    Bioresour Technol; 2018 Jun; 257():121-128. PubMed ID: 29494839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).
    Guihéneuf F; Schmid M; Stengel DB
    Methods Mol Biol; 2015; 1308():173-90. PubMed ID: 26108506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on effective cell disruption methods for lipid extraction from microalgae.
    Prabakaran P; Ravindran AD
    Lett Appl Microbiol; 2011 Aug; 53(2):150-4. PubMed ID: 21575021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of fatty acids in the chemotaxonomy of the family Selenastraceae (Sphaeropleales, Chlorophyceae).
    Mori CC; Bagatini IL; Garcia da Silva T; Parrish CC; Henriques Vieira AA
    Phytochemistry; 2018 Jul; 151():9-16. PubMed ID: 29631105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-step method for rapid extraction of total lipids from green microalgae.
    Axelsson M; Gentili F
    PLoS One; 2014; 9(2):e89643. PubMed ID: 24586930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue.
    Iverson SJ; Lang SL; Cooper MH
    Lipids; 2001 Nov; 36(11):1283-7. PubMed ID: 11795862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.
    Crompton MJ; Dunstan RH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 May; 1084():80-88. PubMed ID: 29574290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.