These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20821070)

  • 1. Pretreatment of synthetic dairy wastewater using the sophorolipid-producing yeast Candida bombicola.
    Daverey A; Pakshirajan K
    Appl Biochem Biotechnol; 2011 Mar; 163(6):720-8. PubMed ID: 20821070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale.
    Omil F; Garrido JM; Arrojo B; Méndez R
    Water Res; 2003 Oct; 37(17):4099-108. PubMed ID: 12946891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a commercial inoculum for the aerobic biodegradation of a high fat content dairy wastewater.
    Loperena L; Ferrari MD; Saravia V; Murro D; Lima C; Ferrando L; Fernández A; Lareo C
    Bioresour Technol; 2007 Mar; 98(5):1045-51. PubMed ID: 16790344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment.
    Kaewsuk J; Thorasampan W; Thanuttamavong M; Seo GT
    J Environ Manage; 2010 May; 91(5):1161-8. PubMed ID: 20149520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immersed membrane bioreactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm.
    Bick A; Tuttle JG; Shandalov S; Oron G
    Water Sci Technol; 2005; 51(10):327-34. PubMed ID: 16104437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High salinity wastewater treatment using yeast and bacterial membrane bioreactors.
    Dan NP; Visvanathan C; Polprasert C; Ben Aim R
    Water Sci Technol; 2002; 46(9):201-9. PubMed ID: 12448470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater.
    Bickers PO; Bhamidimarri R; Shepherd J; Russell J
    Water Sci Technol; 2003; 48(8):43-51. PubMed ID: 14682569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic properties of a commercial and a native inoculum for aerobic milk fat degradation.
    Loperena L; Saravia V; Murro D; Ferrari MD; Lareo C
    Bioresour Technol; 2006 Nov; 97(16):2160-5. PubMed ID: 16300941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of cell surface characteristics on population dynamics in a sequencing batch yeast reactor treating vegetable oil-containing wastewater.
    Lv W; Hesham Ael-L; Zhang Y; Liu X; Yang M
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1785-93. PubMed ID: 21468715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of dairy wastewater treatability by bio-trickling filter packed with lava rocks - case study PEGAH dairy factory.
    Mehrdadi N; Bidhendi GR; Shokouhi M
    Water Sci Technol; 2012; 65(8):1441-7. PubMed ID: 22466591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of dairy wastewater by water hyacinth.
    Munavalli GR; Saler PS
    Water Sci Technol; 2009; 59(4):713-22. PubMed ID: 19237765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low-cost fermentative medium.
    Daverey A; Pakshirajan K
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2090-101. PubMed ID: 19834651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of restaurant waste oil as a precursor for sophorolipid production.
    Shah V; Jurjevic M; Badia D
    Biotechnol Prog; 2007; 23(2):512-5. PubMed ID: 17286413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1722-9. PubMed ID: 16023576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradability evaluation of dairy effluents originated in selected sections of dairy production.
    Janczukowicz W; Zieliński M; Debowski M
    Bioresour Technol; 2008 Jul; 99(10):4199-205. PubMed ID: 17976980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR).
    Mohan SV; Rao NC; Sarma PN
    J Hazard Mater; 2007 Jun; 144(1-2):108-17. PubMed ID: 17097228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined photosynthesis and mechanical aeration for nitrification in dairy waste stabilisation ponds.
    Sukias JP; Craggs RJ; Tanner CC; Davies-Colley RJ; Nagels JW
    Water Sci Technol; 2003; 48(2):137-44. PubMed ID: 14510204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 3,3',4',5-tetrachlorosalicylanilide on reduction of excess sludge and nitrogen removal in biological wastewater treatment process.
    Rho S; Nam GN; Shin JY; Jahng D
    J Microbiol Biotechnol; 2007 Jul; 17(7):1183-90. PubMed ID: 18051331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of feeding strategy and COD/sulfate ratio on the removal of sulfate in an AnSBBR with recirculation of the liquid phase.
    Archilha NC; Canto CS; Ratusznei SM; Rodrigues JA; Zaiat M; Foresti E
    J Environ Manage; 2010 Aug; 91(8):1756-65. PubMed ID: 20413213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.