These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20821127)

  • 1. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy.
    Mori S; Kobayashi M; Kumagai M; Minohara S
    Radiol Phys Technol; 2009 Jan; 2(1):40-5. PubMed ID: 20821127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
    Yan H; Dai JR
    J Appl Clin Med Phys; 2016 Mar; 17(2):174-193. PubMed ID: 27074482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating DRR generation using Fourier slice theorem on the GPU.
    Abdellah M; Eldeib A; Owis MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4238-41. PubMed ID: 26737230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
    Dorgham OM; Laycock SD; Fisher MH
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2594-603. PubMed ID: 22801484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of digitally reconstructed radiographs for use in radiotherapy treatment design.
    Sherouse GW; Novins K; Chaney EL
    Int J Radiat Oncol Biol Phys; 1990 Mar; 18(3):651-8. PubMed ID: 2318699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.
    Abdellah M; Eldeib A; Owis MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4242-5. PubMed ID: 26737231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient rendering of digitally reconstructed radiographs on heterogeneous computing architectures using central slice theorem.
    Abdellah M; Abdallah M; Alzanati M; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3957-3960. PubMed ID: 28269151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast generation of digitally reconstructed radiographs using attenuation fields with application to 2D-3D image registration.
    Russakoff DB; Rohlfing T; Mori K; Rueckert D; Ho A; Adler JR; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1441-54. PubMed ID: 16279081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of Radiological Sciences.
    Mori S; Inaniwa T; Kumagai M; Kuwae T; Matsuzaki Y; Furukawa T; Shirai T; Noda K
    Australas Phys Eng Sci Med; 2012 Jun; 35(2):221-9. PubMed ID: 22711446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast DRR splat rendering using common consumer graphics hardware.
    Spoerk J; Bergmann H; Wanschitz F; Dong S; Birkfellner W
    Med Phys; 2007 Nov; 34(11):4302-8. PubMed ID: 18072495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast DRR generation for 2D to 3D registration on GPUs.
    Tornai GJ; Cserey G; Pappas I
    Med Phys; 2012 Aug; 39(8):4795-9. PubMed ID: 22894404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel generation of digitally reconstructed radiographs on heterogeneous multi-GPU workstations.
    Abdellah M; Abdelaziz A; Eslam Ali EM; Abdelaziz S; Sayed A; Owis MI; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3953-3956. PubMed ID: 28269150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating reconstruction of reference digital tomosynthesis using graphics hardware.
    Yan H; Ren L; Godfrey DJ; Yin FF
    Med Phys; 2007 Oct; 34(10):3768-76. PubMed ID: 17985622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of digitally reconstructed radiographs in radiotherapy treatment planning and verification.
    Yang C; Guiney M; Hughes P; Leung S; Liew KH; Matar J; Quong G
    Australas Radiol; 2000 Nov; 44(4):439-43. PubMed ID: 11103544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance-based treatment planning for prostate intensity-modulated radiotherapy: creation of digitally reconstructed radiographs.
    Chen L; Nguyen TB; Jones E; Chen Z; Luo W; Wang L; Price RA; Pollack A; Ma CM
    Int J Radiat Oncol Biol Phys; 2007 Jul; 68(3):903-11. PubMed ID: 17544002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system.
    Aland T; Walsh A; Jones M; Piccini A; Devlin A
    Med Dosim; 2019 Autumn; 44(3):219-225. PubMed ID: 30153966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of iView and PIPSpro registration software.
    Pallotta S; Ceroti M; Bucciolini M
    J Appl Clin Med Phys; 2010 Aug; 11(4):3180. PubMed ID: 21081875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Registration of electronic portal images for patient set-up verification.
    Matsopoulos GK; Asvestas PA; Delibasis KK; Kouloulias V; Uzunoglu N; Karaiskos P; Sandilos P
    Phys Med Biol; 2004 Jul; 49(14):3279-89. PubMed ID: 15357197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.