These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20821127)

  • 61. Performance-aware programming for intraoperative intensity-based image registration on graphics processing units.
    Leong MCW; Lee KH; Kwan BPY; Ng YL; Liu Z; Navab N; Luk W; Kwok KW
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):375-386. PubMed ID: 33484431
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The use of digitally reconstructed radiographs for three-dimensional treatment planning and CT-simulation.
    Galvin JM; Sims C; Dominiak G; Cooper JS
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):935-42. PubMed ID: 7860409
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhancing depth perception in translucent volumes.
    Kersten MA; Stewart AJ; Troje N; Ellis R
    IEEE Trans Vis Comput Graph; 2006; 12(5):1117-23. PubMed ID: 17080842
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A grey-level image alignment algorithm for registration of portal images and digitally reconstructed radiographs.
    Hristov DH; Fallone BG
    Med Phys; 1996 Jan; 23(1):75-84. PubMed ID: 8700035
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluation of digitally reconstructed radiographs (DRRs) used for clinical radiotherapy: a phantom study.
    McGee KP; Das IJ; Sims C
    Med Phys; 1995 Nov; 22(11 Pt 1):1815-27. PubMed ID: 8587536
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Can digitally reconstructed radiographs (DRRS) replace simulation films in prostate cancer conformal radiotherapy?
    Bollet MA; McNair HA; Hansen VN; Norman A; O'Doherty U; Taylor H; Rose M; Mukherjee R; Huddart R
    Int J Radiat Oncol Biol Phys; 2003 Nov; 57(4):1122-30. PubMed ID: 14575845
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Automated 2D-3D registration of a radiograph and a cone beam CT using line-segment enhancement.
    Munbodh R; Jaffray DA; Moseley DJ; Chen Z; Knisely JP; Cathier P; Duncan JS
    Med Phys; 2006 May; 33(5):1398-411. PubMed ID: 16752576
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Implementation and performance evaluation of reconstruction algorithms on graphics processors.
    Castaño Díez D; Mueller H; Frangakis AS
    J Struct Biol; 2007 Jan; 157(1):288-95. PubMed ID: 17029985
    [TBL] [Abstract][Full Text] [Related]  

  • 69. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration.
    Sharp GC; Kandasamy N; Singh H; Folkert M
    Phys Med Biol; 2007 Oct; 52(19):5771-83. PubMed ID: 17881799
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single-projection based volumetric image reconstruction and 3D tumor localization in real time for lung cancer radiotherapy.
    Li R; Jia X; Lewis JH; Gu X; Folkerts M; Men C; Jiang SB
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):449-56. PubMed ID: 20879431
    [TBL] [Abstract][Full Text] [Related]  

  • 71. GPU-accelerated elastic 3D image registration for intra-surgical applications.
    Ruijters D; ter Haar Romeny BM; Suetens P
    Comput Methods Programs Biomed; 2011 Aug; 103(2):104-12. PubMed ID: 20951463
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.
    Suzuki S; Kakuta M; Ishida T; Akiyama Y
    PLoS One; 2016; 11(8):e0157338. PubMed ID: 27482905
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An algorithm for fast adaptive image binarization with applications in radiotherapy imaging.
    Sund T; Eilertsen K
    IEEE Trans Med Imaging; 2003 Jan; 22(1):22-8. PubMed ID: 12703757
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluation of similarity measures for use in the intensity-based rigid 2D-3D registration for patient positioning in radiotherapy.
    Wu J; Kim M; Peters J; Chung H; Samant SS
    Med Phys; 2009 Dec; 36(12):5391-403. PubMed ID: 20095251
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D interfractional patient position verification using 2D-3D registration of orthogonal images.
    Jans HS; Syme AM; Rathee S; Fallone BG
    Med Phys; 2006 May; 33(5):1420-39. PubMed ID: 16752578
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.
    Kim K; Lee T; Seong Y; Lee J; Jang KE; Choi J; Choi YW; Kim HH; Shin HJ; Cha JH; Cho S; Ye JC
    Med Phys; 2015 Sep; 42(9):5342-55. PubMed ID: 26328983
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Benchmark test of accelerated multi-slice simulation by GPGPU.
    Hosokawa F; Shinkawa T; Arai Y; Sannomiya T
    Ultramicroscopy; 2015 Nov; 158():56-64. PubMed ID: 26183007
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fast polyenergetic forward projection for image formation using OpenCL on a heterogeneous parallel computing platform.
    Zhou L; Clifford Chao KS; Chang J
    Med Phys; 2012 Nov; 39(11):6745-56. PubMed ID: 23127068
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.
    Katsigiannis S; Zacharia E; Maroulis D
    IEEE J Biomed Health Inform; 2017 May; 21(3):867-874. PubMed ID: 26960232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.