BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20821133)

  • 1. Embossed radiography utilizing energy subtraction.
    Osawa A; Watanabe M; Sato E; Matsukiyo H; Enomoto T; Nagao J; Abderyim P; Aizawa K; Tanaka E; Mori H; Kawai T; Ehara S; Sato S; Ogawa A; Onagawa J
    Radiol Phys Technol; 2009 Jan; 2(1):77-86. PubMed ID: 20821133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monochromatic polycapillary imaging utilizing a computed radiography system.
    Sagae M; Sato E; Hayashi Y; Tanaka E; Mori H; Kawai T; Obara H; Ichimaru T; Takayama K; Ido H
    Igaku Butsuri; 2004; 24(2):78-85. PubMed ID: 15383712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.
    Hu YH; Scaduto DA; Zhao W
    Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Physical imaging properties of a flat panel X-ray detector system].
    Yoshida A; Nakamura S; Nishihara S; Kohama C; Takahata A; Fujikawa K
    Igaku Butsuri; 2002; 22(4):246-54. PubMed ID: 12766270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential dual-energy subtraction technique with a dynamic flat-panel detector (FPD): primary study for image-guided radiation therapy (IGRT).
    Tanaka R; Sanada S; Matsui T; Hayashi N; Matsui O
    Radiol Phys Technol; 2008 Jul; 1(2):144-50. PubMed ID: 20821140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier.
    Ducote JL; Xu T; Molloi S
    Phys Med Biol; 2007 Jan; 52(1):183-96. PubMed ID: 17183135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of enhanced K-edge angiography using a cerium target x-ray generator.
    Sato E; Tanaka E; Mori H; Kawai T; Ichimaru T; Sato S; Takayama K; Ido H
    Med Phys; 2004 Nov; 31(11):3017-21. PubMed ID: 15587654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An examination of automatic exposure control regimes for two digital radiography systems.
    Marshall NW
    Phys Med Biol; 2009 Aug; 54(15):4645-70. PubMed ID: 19590115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography.
    Zhang J; Yi B; Lasio G; Suntharalingam M; Yu C
    Med Phys; 2009 Oct; 36(10):4433-9. PubMed ID: 19928074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal beam quality for chest flat panel detector system: realistic phantom study.
    Kuwahara C; Aoki T; Oda N; Kawabata J; Sugimoto K; Kobayashi M; Fujii M; Korogi Y
    Eur Radiol; 2019 Sep; 29(9):4538-4543. PubMed ID: 30737566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Portable Single-Exposure Dual-Energy X-ray Detector for Improved Point-of-Care Diagnostic Imaging.
    Karim KS; Tilley Ii S
    Mil Med; 2023 Nov; 188(Suppl 6):84-91. PubMed ID: 37948245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Evaluation of improvement of the detection of interstitial lung diseases by using the dual-energy subtraction radiography method of a flat-panel detector system].
    Kiguchi M; Kitagawa Y; Fujioka C; Ishifuro M; Yamaguchi T; Ikeda T; Furukawa T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2007 Dec; 63(12):1362-9. PubMed ID: 18310996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Optimal Beam Quality in Chest Radiography Using CsI-flat Panel Detector for Detection of Pulmonary Nodules].
    Oda N; Tabata Y; Mizuta M; Asada Y; Nakano T; Hara T; Kurokawa Y; Aoki T; Uehara S
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(4):335-343. PubMed ID: 33883367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for optimising the radiographic technique in digital X-ray imaging.
    Samei E; Dobbins JT; Lo JY; Tornai MP
    Radiat Prot Dosimetry; 2005; 114(1-3):220-9. PubMed ID: 15933112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.
    Scaduto DA; Tousignant O; Zhao W
    Med Phys; 2017 Aug; 44(8):3965-3977. PubMed ID: 28543761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low dose high energy x-ray in-line phase sensitive imaging prototype: Investigation of optimal geometric conditions and design parameters.
    Ghani MU; Yan A; Wong MD; Li Y; Ren L; Wu X; Liu H
    J Xray Sci Technol; 2015; 23(6):667-82. PubMed ID: 26756405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed slot-scanning radiography using small-angle tomosynthesis: Investigation of spatial resolution.
    Luckner C; Herbst M; Weber T; Beister M; Ritschl L; Kappler S; Maier A
    Med Phys; 2019 Dec; 46(12):5454-5466. PubMed ID: 31529513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustically modulated x-ray phase contrast imaging.
    Hamilton TJ; Bailat CJ; Rose-Petruck C; Diebold GJ
    Phys Med Biol; 2004 Nov; 49(21):4985-96. PubMed ID: 15584532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-energy digital mammography utilizing stimulated phosphor computed radiography.
    Brettle DS; Cowen AR
    Phys Med Biol; 1994 Nov; 39(11):1989-2004. PubMed ID: 15560006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.