BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20821140)

  • 1. Sequential dual-energy subtraction technique with a dynamic flat-panel detector (FPD): primary study for image-guided radiation therapy (IGRT).
    Tanaka R; Sanada S; Matsui T; Hayashi N; Matsui O
    Radiol Phys Technol; 2008 Jul; 1(2):144-50. PubMed ID: 20821140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT).
    Tanaka R; Sanada S; Sakuta K; Kawashima H
    Phys Med Biol; 2015 May; 60(10):N209-18. PubMed ID: 26153580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers.
    Cui Y; Dy JG; Sharp GC; Alexander B; Jiang SB
    Phys Med Biol; 2007 Oct; 52(20):6229-42. PubMed ID: 17921582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal subtraction of dual-energy chest radiographs.
    Armato SG; Doshi DJ; Engelmann R; Caligiuri P; MacMahon H
    Med Phys; 2006 Jun; 33(6):1911-9. PubMed ID: 16872098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy.
    Lin T; Cerviño LI; Tang X; Vasconcelos N; Jiang SB
    Phys Med Biol; 2009 Feb; 54(4):981-92. PubMed ID: 19147898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Registration of lung tissue between fluoroscope and CT images: determination of beam gating parameters in radiotherapy.
    Chang S; Zhou J; Liu Q; Metaxas DN; Haffty BG; Kim SN; Jabbour SJ; Yue NJ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):751-8. PubMed ID: 18051126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated marker tracking using noisy X-ray images degraded by the treatment beam.
    Wisotzky E; Fast MF; Oelfke U; Nill S
    Z Med Phys; 2015 Jun; 25(2):123-34. PubMed ID: 25280891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.
    Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N
    Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined kV and MV imaging for real-time tracking of implanted fiducial markers.
    Wiersma RD; Mao W; Xing L
    Med Phys; 2008 Apr; 35(4):1191-8. PubMed ID: 18491510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of pulmonary function using breathing chest radiography with a dynamic flat panel detector: primary results in pulmonary diseases.
    Tanaka R; Sanada S; Okazaki N; Kobayashi T; Fujimura M; Yasui M; Matsui T; Nakayama K; Nanbu Y; Matsui O
    Invest Radiol; 2006 Oct; 41(10):735-45. PubMed ID: 16971797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy.
    Lawson JD; Schreibmann E; Jani AB; Fox T
    J Appl Clin Med Phys; 2007 Nov; 8(4):96-113. PubMed ID: 18449149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of digital fluoroscopy with CT-based radiation therapy planning of lung tumors.
    Ruschin M; Sixel KE
    Med Phys; 2002 Aug; 29(8):1698-709. PubMed ID: 12201416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy.
    Tanaka R; Ichikawa K; Mori S; Dobashi S; Kumagai M; Kawashima H; Minohara S; Sanada S
    J Radiat Res; 2010; 51(6):723-31. PubMed ID: 21030796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of a digital chest phantom for studies on energy subtraction techniques].
    Hayashi N; Taniguchi A; Noto K; Shimosegawa M; Ogura T; Doi K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2014 Mar; 70(3):191-8. PubMed ID: 24647055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commissioning of a fluoroscopic-based real-time markerless tumor tracking system in a superconducting rotating gantry for carbon-ion pencil beam scanning treatment.
    Mori S; Sakata Y; Hirai R; Furuichi W; Shimabukuro K; Kohno R; Koom WS; Kasai S; Okaya K; Iseki Y
    Med Phys; 2019 Apr; 46(4):1561-1574. PubMed ID: 30689205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-time, single-exposure, dual-energy subtraction mask for markerless tumor tracking in radiotherapy: Proof of concept.
    Mori S
    Phys Med; 2019 Jul; 63():63-69. PubMed ID: 31221410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography.
    Zhang J; Yi B; Lasio G; Suntharalingam M; Yu C
    Med Phys; 2009 Oct; 36(10):4433-9. PubMed ID: 19928074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast CT and CT-fluoroscopy registration algorithm with respiratory motion compensation for image-guided lung intervention.
    Su P; Yang J; Lu K; Yu N; Wong ST; Xue Z
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2034-41. PubMed ID: 23434600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy.
    Zhou J; Kim S; Jabbour S; Goyal S; Haffty B; Chen T; Levinson L; Metaxas D; Yue NJ
    Med Phys; 2010 Mar; 37(3):1298-308. PubMed ID: 20384267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markerless tumor tracking using fast-kV switching dual-energy fluoroscopy on a benchtop system.
    Haytmyradov M; Mostafavi H; Wang A; Zhu L; Surucu M; Patel R; Ganguly A; Richmond M; Cassetta R; Harkenrider MM; Roeske JC
    Med Phys; 2019 Jul; 46(7):3235-3244. PubMed ID: 31059124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.