These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20821194)
41. NosX function connects to nitrous oxide (N2O) reduction by affecting the Cu(Z) center of NosZ and its activity in vivo. Wunsch P; Körner H; Neese F; van Spanning RJ; Kroneck PM; Zumft WG FEBS Lett; 2005 Aug; 579(21):4605-9. PubMed ID: 16087179 [TBL] [Abstract][Full Text] [Related]
42. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. He M; Li X; Liu H; Miller SJ; Wang G; Rensing C J Hazard Mater; 2011 Jan; 185(2-3):682-8. PubMed ID: 20952126 [TBL] [Abstract][Full Text] [Related]
43. Oxidation of dithiothreitol during turnover of nitric oxide reductase: evidence for generation of nitroxyl with the enzyme from Paracoccus denitrificans. Turk T; Hollocher TC Biochem Biophys Res Commun; 1992 Mar; 183(3):983-8. PubMed ID: 1567412 [TBL] [Abstract][Full Text] [Related]
44. Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. Xia X; Wu S; Li N; Wang D; Zheng S; Wang G J Hazard Mater; 2018 Jan; 342():499-509. PubMed ID: 28881274 [TBL] [Abstract][Full Text] [Related]
45. The nitric oxide regulated nor promoter of Paracoccus denitrificans. Hutchings MI; Spiro S Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2635-2641. PubMed ID: 11021938 [TBL] [Abstract][Full Text] [Related]
46. The function of cytoplasmic membrane of Paracoccus denitrificans in controlling the rate of reduction of terminal acceptors. Kucera I; Laucík J; Dadák V Eur J Biochem; 1983 Oct; 136(1):135-40. PubMed ID: 6684550 [TBL] [Abstract][Full Text] [Related]
47. Anaerobic growth of Paracoccus denitrificans requires cobalamin: characterization of cobK and cobJ genes. Shearer N; Hinsley AP; Van Spanning RJ; Spiro S J Bacteriol; 1999 Nov; 181(22):6907-13. PubMed ID: 10559155 [TBL] [Abstract][Full Text] [Related]
48. Functional and structural characterization of a flavoprotein monooxygenase essential for biogenesis of tryptophylquinone cofactor. Oozeki T; Nakai T; Kozakai K; Okamoto K; Kuroda S; Kobayashi K; Tanizawa K; Okajima T Nat Commun; 2021 Feb; 12(1):933. PubMed ID: 33568660 [TBL] [Abstract][Full Text] [Related]
49. Production, purification, and characterization of soluble NADH-flavin Oxidoreductase (StyB) from Pseudomonas putida SN1. Yeo YJ; Shin S; Lee SG; Park S; Jeong YJ J Microbiol Biotechnol; 2009 Apr; 19(4):362-7. PubMed ID: 19420991 [TBL] [Abstract][Full Text] [Related]
50. Kinetic analysis of substrate inhibition in nitric oxide reductase of Paracoccus denitrificans. Koutný M; Kucera I Biochem Biophys Res Commun; 1999 Aug; 262(2):562-4. PubMed ID: 10462514 [TBL] [Abstract][Full Text] [Related]
51. Electron-transport chain and coupled oxidative phosphorylation in methanol-grown Paracoccus denitrificans. Van Verseveld HW; Stouthamer AH Arch Microbiol; 1978 Jul; 118(1):13-20. PubMed ID: 29587 [No Abstract] [Full Text] [Related]
53. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. Jin H; Zhang Y; Buchko GW; Varnum SM; Robinson H; Squier TC; Long PE PLoS One; 2012; 7(8):e42432. PubMed ID: 22879982 [TBL] [Abstract][Full Text] [Related]
54. Immunochemical probing of the structure and cofactor of NADH dehydrogenase from Paracoccus denitrificans. George CL; Ferguson SJ Biochem J; 1987 Jun; 244(3):661-8. PubMed ID: 3446183 [TBL] [Abstract][Full Text] [Related]
55. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Brüggemann C; Denger K; Cook AM; Ruff J Microbiology (Reading); 2004 Apr; 150(Pt 4):805-816. PubMed ID: 15073291 [TBL] [Abstract][Full Text] [Related]
56. Substrate control of internal electron transfer in bacterial nitric-oxide reductase. Lachmann P; Huang Y; Reimann J; Flock U; Adelroth P J Biol Chem; 2010 Aug; 285(33):25531-7. PubMed ID: 20547487 [TBL] [Abstract][Full Text] [Related]
57. Chromate reduction by cell-free extract of Bacillus firmus KUCr1. Sau GB; Chatterjee S; Mukherjee SK Pol J Microbiol; 2010; 59(3):185-90. PubMed ID: 21033582 [TBL] [Abstract][Full Text] [Related]
58. Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate. Italiano F; Rinalducci S; Agostiano A; Zolla L; De Leo F; Ceci LR; Trotta M Biometals; 2012 Oct; 25(5):939-49. PubMed ID: 22661079 [TBL] [Abstract][Full Text] [Related]
59. Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. Wang PC; Toda K; Ohtake H; Kusaka I; Yabe I FEMS Microbiol Lett; 1991 Feb; 62(1):11-5. PubMed ID: 1851711 [TBL] [Abstract][Full Text] [Related]
60. Genomic and physiological characterization of the chromate-reducing, aquifer-derived Firmicute Pelosinus sp. strain HCF1. Beller HR; Han R; Karaoz U; Lim H; Brodie EL Appl Environ Microbiol; 2013 Jan; 79(1):63-73. PubMed ID: 23064329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]