These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 20821202)
1. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India. Freikowski D; Winter J; Gallert C Appl Microbiol Biotechnol; 2010 Dec; 88(6):1363-71. PubMed ID: 20821202 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
3. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Handley KM; Héry M; Lloyd JR Int J Syst Evol Microbiol; 2009 Apr; 59(Pt 4):886-92. PubMed ID: 19329625 [TBL] [Abstract][Full Text] [Related]
4. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. Chang JS; Yoon IH; Kim KW J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304 [TBL] [Abstract][Full Text] [Related]
5. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490 [TBL] [Abstract][Full Text] [Related]
6. A novel arsenate respiring isolate that can utilize aromatic substrates. Liu A; Garcia-Dominguez E; Rhine ED; Young LY FEMS Microbiol Ecol; 2004 Jun; 48(3):323-32. PubMed ID: 19712302 [TBL] [Abstract][Full Text] [Related]
7. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688 [TBL] [Abstract][Full Text] [Related]
8. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Handley KM; Héry M; Lloyd JR Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300 [TBL] [Abstract][Full Text] [Related]
9. Pentavalent arsenate reductase activity in cytosolic fractions of Pseudomonas sp., isolated from arsenic-contaminated sites of Tezpur, Assam. Srivastava D; Madamwar D; Subramanian RB Appl Biochem Biotechnol; 2010 Oct; 162(3):766-79. PubMed ID: 19950002 [TBL] [Abstract][Full Text] [Related]
10. Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California. Fisher JC; Hollibaugh JT Appl Environ Microbiol; 2008 May; 74(9):2588-94. PubMed ID: 18326681 [TBL] [Abstract][Full Text] [Related]
11. Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Müller N; Griffin BM; Stingl U; Schink B Environ Microbiol; 2008 Jun; 10(6):1501-11. PubMed ID: 18248451 [TBL] [Abstract][Full Text] [Related]
12. A microbial arsenic cycle in a salt-saturated, extreme environment. Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal. Srivastava S; Verma PC; Singh A; Mishra M; Singh N; Sharma N; Singh N Appl Microbiol Biotechnol; 2012 Sep; 95(5):1275-91. PubMed ID: 22410743 [TBL] [Abstract][Full Text] [Related]
14. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite. Rathinasabapathi B; Raman SB; Kertulis G; Ma L Can J Microbiol; 2006 Jul; 52(7):695-700. PubMed ID: 16917527 [TBL] [Abstract][Full Text] [Related]
15. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Santini JM; Streimann ICA; Hoven RNV Int J Syst Evol Microbiol; 2004 Nov; 54(Pt 6):2241-2244. PubMed ID: 15545465 [TBL] [Abstract][Full Text] [Related]
16. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor. Balk M; Weijma J; Goorissen HP; Ronteltap M; Hansen TA; Stams AJ Appl Microbiol Biotechnol; 2007 Jan; 73(5):1203-11. PubMed ID: 17028873 [TBL] [Abstract][Full Text] [Related]
17. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. Hatayama M; Sato T; Shinoda K; Inoue C J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228 [TBL] [Abstract][Full Text] [Related]
18. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Chang JS; Kim YH; Kim KW Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832 [TBL] [Abstract][Full Text] [Related]
19. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256 [TBL] [Abstract][Full Text] [Related]