BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20821293)

  • 1. The metabolic switch and its regulation in cancer cells.
    Zhou S; Huang C; Wei Y
    Sci China Life Sci; 2010 Aug; 53(8):942-58. PubMed ID: 20821293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics revisits the cancer metabolome.
    Hu H; Deng C; Yang T; Dong Q; Chen Y; Nice EC; Huang C; Wei Y
    Expert Rev Proteomics; 2011 Aug; 8(4):505-33. PubMed ID: 21819305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis.
    Barger JF; Plas DR
    Endocr Relat Cancer; 2010 Dec; 17(4):R287-304. PubMed ID: 20699334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects?
    Dell' Antone P
    Med Hypotheses; 2012 Sep; 79(3):388-92. PubMed ID: 22770870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNAs link metabolic reprogramming to oncogenesis.
    Hatziapostolou M; Polytarchou C; Iliopoulos D
    Trends Endocrinol Metab; 2013 Jul; 24(7):361-73. PubMed ID: 23602813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.
    DeBerardinis RJ; Lum JJ; Hatzivassiliou G; Thompson CB
    Cell Metab; 2008 Jan; 7(1):11-20. PubMed ID: 18177721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose avidity of carcinomas.
    Ortega AD; Sánchez-Aragó M; Giner-Sánchez D; Sánchez-Cenizo L; Willers I; Cuezva JM
    Cancer Lett; 2009 Apr; 276(2):125-35. PubMed ID: 18790562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.
    Daye D; Wellen KE
    Semin Cell Dev Biol; 2012 Jun; 23(4):362-9. PubMed ID: 22349059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis.
    Erol A
    Med Hypotheses; 2005; 65(3):525-9. PubMed ID: 15905043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of tumor growth by replacing glutathione with N-acetyl-L-cysteine.
    Yildiz D
    Med Hypotheses; 2004; 63(1):80-2. PubMed ID: 15193353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor cell metabolism: cancer's Achilles' heel.
    Kroemer G; Pouyssegur J
    Cancer Cell; 2008 Jun; 13(6):472-82. PubMed ID: 18538731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo's hypothesis.
    Menendez JA; Colomer R; Lupu R
    Med Hypotheses; 2005; 64(2):337-41. PubMed ID: 15607568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.
    Liu Y; Zhang W; Cao Y; Liu Y; Bergmeier S; Chen X
    Cancer Lett; 2010 Dec; 298(2):176-85. PubMed ID: 20678861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proliferative response of hela cells to 2-deoxy-D-glucose under hypoxic or anoxic conditions: an analogue for studying some properties of in vivo solid cancers.
    Anderson KM; Tsui P; Guinan P; Rubenstein M
    Anticancer Res; 2006; 26(6B):4155-62. PubMed ID: 17201127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of energy metabolism in breast cancer brain metastases.
    Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B
    Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer.
    Marshall S
    Sci STKE; 2006 Aug; 2006(346):re7. PubMed ID: 16885148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer.
    Igal RA
    Carcinogenesis; 2010 Sep; 31(9):1509-15. PubMed ID: 20595235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.