BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 20821396)

  • 41. Sources of absorption and scattering contrast for near-infrared optical mammography.
    Cerussi AE; Berger AJ; Bevilacqua F; Shah N; Jakubowski D; Butler J; Holcombe RF; Tromberg BJ
    Acad Radiol; 2001 Mar; 8(3):211-8. PubMed ID: 11249084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monte-Carlo simulation of light transport for NIRS measurements in tumors of elliptic geometry.
    Pavlin M; Jarm T; Miklavcic D
    Adv Exp Med Biol; 2003; 530():41-9. PubMed ID: 14562703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Applications of NIR spectroscopy to monitoring and analyzing the solid state during industrial crystallization processes.
    Févotte G; Calas J; Puel F; Hoff C
    Int J Pharm; 2004 Apr; 273(1-2):159-69. PubMed ID: 15010140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assuring specificity for a multivariate near-infrared (NIR) calibration: the example of the Chambersburg Shoot-out 2002 data set.
    Norris KH; Ritchie GE
    J Pharm Biomed Anal; 2008 Nov; 48(3):1037-41. PubMed ID: 18774255
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of FT-NIR for API content assay in organic solvent media: a single calibration for multiple downstream processing streams.
    Rodrigues LO; Cardoso JP; Menezes JC
    Talanta; 2008 Jun; 75(5):1203-7. PubMed ID: 18585202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes.
    De Beer T; Burggraeve A; Fonteyne M; Saerens L; Remon JP; Vervaet C
    Int J Pharm; 2011 Sep; 417(1-2):32-47. PubMed ID: 21167266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Near infrared spectroscopy for qualitative comparison of pharmaceutical batches.
    Roggo Y; Roeseler C; Ulmschneider M
    J Pharm Biomed Anal; 2004 Nov; 36(4):777-86. PubMed ID: 15533670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical properties of biomimetic probes engineered from erythrocytes.
    Burns JM; Saager R; Majaron B; Jia W; Anvari B
    Nanotechnology; 2017 Jan; 28(3):035101. PubMed ID: 27966473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of a newly developed portable NIR imaging device to monitor the dissolution process of tablets.
    Ishikawa D; Murayama K; Awa K; Genkawa T; Komiyama M; Kazarian SG; Ozaki Y
    Anal Bioanal Chem; 2013 Nov; 405(29):9401-9. PubMed ID: 24196120
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.
    Kitamura R; Inagaki T; Tsuchikawa S
    Opt Express; 2016 Feb; 24(4):3999-4009. PubMed ID: 26907052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.
    Galán-Freyle NJ; Pacheco-Londoño LC; Román-Ospino AD; Hernandez-Rivera SP
    Appl Spectrosc; 2016 Sep; 70(9):1511-9. PubMed ID: 27558366
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.
    Manley M
    Chem Soc Rev; 2014 Dec; 43(24):8200-14. PubMed ID: 25156745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review.
    Gendrin C; Roggo Y; Collet C
    J Pharm Biomed Anal; 2008 Nov; 48(3):533-53. PubMed ID: 18819769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Data processing of vibrational chemical imaging for pharmaceutical applications.
    Sacré PY; De Bleye C; Chavez PF; Netchacovitch L; Hubert P; Ziemons E
    J Pharm Biomed Anal; 2014 Dec; 101():123-40. PubMed ID: 24809748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Influence of FT-NIR spectrometer scanning requirements on the math model's precision].
    Zhao LL; Zhao LL; Li JH; Zhang LD; Yan YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):41-4. PubMed ID: 15768972
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of different chemometric and analytical methods for the prediction of particle size distribution in pharmaceutical powders.
    Sarraguça MC; Cruz AV; Amaral HR; Costa PC; Lopes JA
    Anal Bioanal Chem; 2011 Feb; 399(6):2137-47. PubMed ID: 20922517
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Imaging pharmaceutical tablets with optical coherence tomography.
    Mauritz JM; Morrisby RS; Hutton RS; Legge CH; Kaminski CF
    J Pharm Sci; 2010 Jan; 99(1):385-91. PubMed ID: 19544370
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transmission versus reflectance spectroscopy for quantitation.
    Gardner CM
    J Biomed Opt; 2018 Jan; 23(1):1-8. PubMed ID: 29297210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.