These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 20821417)
21. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing. Andeer P; Stahl DA; Lillis L; Strand SE Environ Sci Technol; 2013 Sep; 47(18):10356-63. PubMed ID: 23909596 [TBL] [Abstract][Full Text] [Related]
22. Metabolite profiling of [14C]hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Yucatan miniature pigs. Major MA; Reddy G; Berge MA; Patzer SS; Li AC; Gohdes M J Toxicol Environ Health A; 2007 Jul; 70(14):1191-202. PubMed ID: 17573633 [TBL] [Abstract][Full Text] [Related]
23. A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. Indest KJ; Crocker FH; Athow R J Microbiol Methods; 2007 Feb; 68(2):267-74. PubMed ID: 17010461 [TBL] [Abstract][Full Text] [Related]
24. Delayed myelosuppression with acute exposure to hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and environmental degradation product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) in rats. Jaligama S; Kale VM; Wilbanks MS; Perkins EJ; Meyer SA Toxicol Appl Pharmacol; 2013 Feb; 266(3):443-51. PubMed ID: 23219714 [TBL] [Abstract][Full Text] [Related]
25. Growth changes of eighteen herbaceous angiosperms induced by Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil. Hagan FL; Koeser AK; Dawson JO Int J Phytoremediation; 2016; 18(1):94-102. PubMed ID: 26247847 [TBL] [Abstract][Full Text] [Related]
26. Aerobic biodegradation of high explosive hexahydro-1,3,5- trinitro-1,3,5-triazine by Janibacter cremeus isolated from contaminated soil. Kalsi A; Celin SM; Sharma JG Biotechnol Lett; 2020 Nov; 42(11):2299-2307. PubMed ID: 32572651 [TBL] [Abstract][Full Text] [Related]
27. Effects, transfer, and fate of RDX from aged soil in plants and worms. Best EP; Geter KN; Tatem HE; Lane BK Chemosphere; 2006 Jan; 62(4):616-25. PubMed ID: 16045966 [TBL] [Abstract][Full Text] [Related]
28. Utility of lipid biomarkers in support of bioremediation efforts at army sites. Ringelberg D; Richmond M; Foley K; Reynolds C J Microbiol Methods; 2008 Jul; 74(1):17-25. PubMed ID: 17714813 [TBL] [Abstract][Full Text] [Related]
29. Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. Lorenz A; Rylott EL; Strand SE; Bruce NC FEMS Microbiol Lett; 2013 Mar; 340(1):49-54. PubMed ID: 23289483 [TBL] [Abstract][Full Text] [Related]
30. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site. Jugnia LB; Manno D; Drouin K; Hendry M Environ Sci Pollut Res Int; 2018 Jul; 25(20):19436-19445. PubMed ID: 29728973 [TBL] [Abstract][Full Text] [Related]
31. Interaction of hydration, aging, and carbon content of soil on the evaporation and skin bioavailability of munition contaminants. Reifenrath WG; Kammen HO; Reddy G; Major MA; Leach GJ J Toxicol Environ Health A; 2008; 71(8):486-94. PubMed ID: 18338283 [TBL] [Abstract][Full Text] [Related]
32. Determination of N-nitroso derivatives of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soils by pressurized liquid extraction and liquid chromatography-electrospray ionization mass spectrometry. Pan X; Zhang B; Cox SB; Anderson TA; Cobb GP J Chromatogr A; 2006 Feb; 1107(1-2):2-8. PubMed ID: 16387311 [TBL] [Abstract][Full Text] [Related]
33. Impacts of explosive compounds on vegetation: A need for community scale investigations. Via SM; Zinnert JC Environ Pollut; 2016 Jan; 208(Pt B):495-505. PubMed ID: 26552520 [TBL] [Abstract][Full Text] [Related]
34. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305 [TBL] [Abstract][Full Text] [Related]
35. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function. Merlin C; Devers M; Béguet J; Boggio B; Rouard N; Martin-Laurent F Environ Sci Pollut Res Int; 2016 Mar; 23(5):4185-98. PubMed ID: 26025175 [TBL] [Abstract][Full Text] [Related]
37. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms. Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919 [TBL] [Abstract][Full Text] [Related]
38. Differential effects of two explosive compounds on seed germination and seedling morphology of a woody shrub, Morella cerifera. Via SM; Zinnert JC; Young DR Ecotoxicology; 2015 Jan; 24(1):194-201. PubMed ID: 25336045 [TBL] [Abstract][Full Text] [Related]
39. Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida). Zhang B; Pan X; Cobb GP; Anderson TA Chemosphere; 2009 Jun; 76(1):76-82. PubMed ID: 19278715 [TBL] [Abstract][Full Text] [Related]
40. Effect of fungicide iprodione on soil bacterial community. Wang YS; Wen CY; Chiu TC; Yen JH Ecotoxicol Environ Saf; 2004 Sep; 59(1):127-32. PubMed ID: 15261734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]