BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20821419)

  • 1. Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1.
    Singh R; Olson MS
    Environ Toxicol Chem; 2010 Jan; 29(1):56-63. PubMed ID: 20821419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene.
    Parales RE; Ditty JL; Harwood CS
    Appl Environ Microbiol; 2000 Sep; 66(9):4098-104. PubMed ID: 10966434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures.
    Liu J; Amemiya T; Chang Q; Qian Y; Itoh K
    Biodegradation; 2012 Sep; 23(5):683-91. PubMed ID: 22350420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1.
    Liu JB; Amemiya T; Chang Q; Xu X; Itoh K
    J Environ Sci Health B; 2011; 46(4):294-300. PubMed ID: 21500075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.
    Kim S; Bae W; Hwang J; Park J
    Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.
    Chee GJ
    Talanta; 2011 Sep; 85(4):1778-82. PubMed ID: 21872018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.
    Grösbacher M; Eckert D; Cirpka OA; Griebler C
    Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1.
    Morono Y; Unno H; Tanji Y; Hori K
    Appl Environ Microbiol; 2004 May; 70(5):2830-5. PubMed ID: 15128539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology.
    Cutright TJ; Meza L
    Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.
    Leahy JG; Byrne AM; Olsen RH
    Appl Environ Microbiol; 1996 Mar; 62(3):825-33. PubMed ID: 8975612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber.
    Wang X; Long T; Ford RM
    Biotechnol Bioeng; 2012 Jul; 109(7):1622-8. PubMed ID: 22252781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8.
    Shingleton JT; Applegate BM; Nagel AC; Bienkowski PR; Sayler GS
    Appl Environ Microbiol; 1998 Dec; 64(12):5049-52. PubMed ID: 9835608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination.
    Wang X; Lanning LM; Ford RM
    Environ Sci Technol; 2016 Jan; 50(1):165-72. PubMed ID: 26633578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas putida B2: a tod-lux bioluminescent reporter for toluene and trichloroethylene co-metabolism.
    Applegate B; Kelly C; Lackey L; McPherson J; Kehrmeyer S; Menn FM; Bienkowski P; Sayler G
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):4-9. PubMed ID: 9079282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1.
    Reardon KF; Mosteller DC; Bull Rogers JD
    Biotechnol Bioeng; 2000 Aug; 69(4):385-400. PubMed ID: 10862677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism.
    Kelly CJ; Bienkowski PR; Sayler GS
    Biotechnol Bioeng; 2000 Aug; 69(3):256-65. PubMed ID: 10861405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria.
    Mars AE; Prins GT; Wietzes P; de Koning W; Janssen DB
    Appl Environ Microbiol; 1998 Jan; 64(1):208-15. PubMed ID: 16349481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.