BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20821419)

  • 21. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida.
    Heald S; Jenkins RO
    Appl Environ Microbiol; 1994 Dec; 60(12):4634-7. PubMed ID: 7811103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation.
    Díaz LF; Muñoz R; Bordel S; Villaverde S
    Biodegradation; 2008 Apr; 19(2):197-208. PubMed ID: 17487552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture.
    Hnaien M; Lagarde F; Bausells J; Errachid A; Jaffrezic-Renault N
    Anal Bioanal Chem; 2011 May; 400(4):1083-92. PubMed ID: 21052645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device.
    Wang X; Atencia J; Ford RM
    Biotechnol Bioeng; 2015 May; 112(5):896-904. PubMed ID: 25408100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian estimation and sensitivity analysis of toluene and trichloroethylene biodegradation kinetic parameters.
    Yu F; Munoz B; Bienkowski PR; Sayler GS
    J Environ Qual; 2020 May; 49(3):640-653. PubMed ID: 33016407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock.
    Huertas MJ; Duque E; Marqués S; Ramos JL
    Appl Environ Microbiol; 1998 Jan; 64(1):38-42. PubMed ID: 9435060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates.
    Yeager CM; Arthur KM; Bottomley PJ; Arp DJ
    Biodegradation; 2004 Feb; 15(1):19-28. PubMed ID: 14971854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging.
    Olson MS; Ford RM; Smith JA; Fernandez EJ
    Environ Sci Technol; 2004 Jul; 38(14):3864-70. PubMed ID: 15298194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.
    Weyens N; Beckers B; Schellingen K; Ceulemans R; van der Lelie D; Newman L; Taghavi S; Carleer R; Vangronsveld J
    Int J Phytoremediation; 2015; 17(1-6):40-8. PubMed ID: 25174423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds.
    Nelson MJ; Montgomery SO; Pritchard PH
    Appl Environ Microbiol; 1988 Feb; 54(2):604-6. PubMed ID: 3355147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by Pseudomonas putida TVA8.
    Shingleton JT; Applegate BA; Baker AJ; Sayler GS; Bienkowski PR
    Biotechnol Bioeng; 2001 Dec; 76(4):341-50. PubMed ID: 11745162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experiments and three phase modelling of a biofilter for the removal of toluene and trichloroethylene.
    Das C; Chowdhury R; Bhattacharya P
    Bioprocess Biosyst Eng; 2011 May; 34(4):447-58. PubMed ID: 21170726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments.
    Ballarini E; Beyer C; Bauer RD; Griebler C; Bauer S
    Biodegradation; 2014 Jun; 25(3):351-71. PubMed ID: 24122285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures.
    Lee CY; Liu WD
    J Hazard Mater; 2006 Sep; 137(1):541-9. PubMed ID: 16621274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture.
    Rogers JB; DuTeau NM; Reardon KF
    Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene.
    Han YL; Kuo MC; Tseng IC; Lu CJ
    J Hazard Mater; 2007 Sep; 148(3):583-91. PubMed ID: 17412499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes.
    Zylstra GJ; Wackett LP; Gibson DT
    Appl Environ Microbiol; 1989 Dec; 55(12):3162-6. PubMed ID: 2694960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene.
    Kim HS; Jaffé PR
    Water Res; 2007 May; 41(10):2089-100. PubMed ID: 17397899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions.
    Muñoz R; Hernández M; Segura A; Gouveia J; Rojas A; Ramos JL; Villaverde S
    Appl Microbiol Biotechnol; 2009 May; 83(1):189-98. PubMed ID: 19277642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.