These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20821419)

  • 41. Treatment of co-mingled benzene, toluene and TCE in groundwater.
    Chen L; Liu Y; Liu F; Jin S
    J Hazard Mater; 2014 Jun; 275():116-20. PubMed ID: 24857895
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aerobic biodegradation of trichloroethylene using a consortium of five bacterial strains.
    Meza L; Cutright TJ; El-Zahab B; Wang P
    Biotechnol Lett; 2003 Nov; 25(22):1925-32. PubMed ID: 14719828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aerobic, phenol-induced TCE degradation in completely mixed, continuous-culture reactors.
    Coyle CG; Parkin GF; Gibson DT
    Biodegradation; 1993; 4(1):59-69. PubMed ID: 7763855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Responses of Pseudomonas putida to toxic aromatic carbon sources.
    Krell T; Lacal J; Guazzaroni ME; Busch A; Silva-Jiménez H; Fillet S; Reyes-Darías JA; Muñoz-Martínez F; Rico-Jiménez M; García-Fontana C; Duque E; Segura A; Ramos JL
    J Biotechnol; 2012 Jul; 160(1-2):25-32. PubMed ID: 22321573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Response of Pseudomonas putida F1 cultures to fluctuating toluene loads and operational failures in suspended growth bioreactors.
    Muñoz R; Díaz LF; Bordel S; Villaverde S
    Biodegradation; 2008 Nov; 19(6):897-908. PubMed ID: 18408894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects.
    Halsey KH; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):794-801. PubMed ID: 15754184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.
    Padgett MC; Tick GR; Carroll KC; Burke WR
    J Contam Hydrol; 2017 Mar; 198():11-23. PubMed ID: 28202180
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of trichloroethylene and toluene on nitrogen cycling in soil.
    Fuller ME; Scow KM
    Appl Environ Microbiol; 1997 Oct; 63(10):4015-9. PubMed ID: 9327567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b.
    Sun AK; Wood TK
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):248-56. PubMed ID: 8920197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1.
    Wackett LP; Gibson DT
    Appl Environ Microbiol; 1988 Jul; 54(7):1703-8. PubMed ID: 3415234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes.
    Vardar G; Barbieri P; Wood TK
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):696-701. PubMed ID: 15290136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.
    Eckert D; Kürzinger P; Bauer R; Griebler C; Cirpka OA
    J Contam Hydrol; 2015 Jan; 172():100-11. PubMed ID: 25496820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Indole-based assay to assess the effect of ethanol on Pseudomonas putida F1 dioxygenase activity.
    da Silva ML; Alvarez PJ
    Biodegradation; 2010 Jun; 21(3):425-30. PubMed ID: 19904615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirometric data for strongly inhibited cultures.
    Alagappan G; Cowan R
    Biotechnol Bioeng; 2003 Sep; 83(7):798-809. PubMed ID: 12889020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.
    Lee MH; Clingenpeel SC; Leiser OP; Wymore RA; Sorenson KS; Watwood ME
    Environ Pollut; 2008 May; 153(1):238-46. PubMed ID: 17904715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites.
    Bordel S; Muñoz R; Díaz LF; Villaverde S
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):857-66. PubMed ID: 17136537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H; Zhang SY; Wang XL; Yang J; Gu JD; Zhu RL; Wang P; Lin KF; Liu YD
    Environ Technol; 2015; 36(5-8):667-74. PubMed ID: 25220534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm.
    Strobel KL; McGowan S; Bauer RD; Griebler C; Liu J; Ford RM
    Biotechnol Bioeng; 2011 Sep; 108(9):2070-7. PubMed ID: 21495010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1.
    Bygd MD; Aukema KG; Richman JE; Wackett LP
    mBio; 2021 Dec; 12(6):e0300121. PubMed ID: 34781746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.