BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20821486)

  • 1. Evaluation of hexavalent chromium in sediment pore water of the Hackensack River, New Jersey, USA.
    Driscoll SK; McArdle ME; Plumlee MH; Proctor D
    Environ Toxicol Chem; 2010 Mar; 29(3):617-20. PubMed ID: 20821486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical stability of chromium in sediments from the lower Hackensack River, New Jersey.
    Magar VS; Martello L; Southworth B; Fuchsman P; Sorensen M; Wenning RJ
    Sci Total Environ; 2008 May; 394(1):103-11. PubMed ID: 18295301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey.
    Martello L; Fuchsman P; Sorensen M; Magar V; Wenning RJ
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):337-50. PubMed ID: 17657462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium speciation in river sediment pore water contaminated by tannery effluent.
    Burbridge DJ; Koch I; Zhang J; Reimer KJ
    Chemosphere; 2012 Oct; 89(7):838-43. PubMed ID: 22658944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium occurrence and speciation in Baltimore harbor sediments and porewater, Baltimore, Maryland, USA.
    Graham AM; Wadhawan AR; Bouwer EJ
    Environ Toxicol Chem; 2009 Mar; 28(3):471-80. PubMed ID: 18937532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Acid volatile sulfide and bioaccumulation of Cr in sediments from a municipal polluted river].
    Li F; Wen YM; Zhu PT; Jin H; Song WW; Dai RZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):875-81. PubMed ID: 19432344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model.
    Tseng CH; Lee IH; Chen YC
    Sci Total Environ; 2019 Jun; 669():103-111. PubMed ID: 30878918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of chromium in sediments dominated by macrophytes and cyanobacteria in different zones of Lake Taihu.
    Fan X; Ding S; Chen M; Gao S; Fu Z; Gong M; Wang Y; Zhang C
    Sci Total Environ; 2019 May; 666():994-1002. PubMed ID: 30970505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Transport and release of Cd, Pb and Cr from the Yangtze Estuarine sediments during sediment resuspension event].
    Bi CJ; Chen ZL; Li M; Zhang JJ; Sun WW
    Huan Jing Ke Xue; 2011 Sep; 32(9):2512-21. PubMed ID: 22165214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian ecological risk potential in an urbanized estuary: Lower Hackensack River, New Jersey, USA.
    Conder JM; Sorensen MT; Leitman P; Martello LB; Wenning RJ
    Sci Total Environ; 2009 Jan; 407(3):1035-47. PubMed ID: 19004475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford reach of the Columbia River, Washington, USA.
    Farag AM; Harper DD; Cleveland L; Brumbaugh WG; Little EE
    Arch Environ Contam Toxicol; 2006 May; 50(4):575-9. PubMed ID: 16453067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of potential toxicity and bioavailability of chromium in sediments associated with chromite ore processing residue.
    Becker DS; Long ER; Proctor DM; Ginn TC
    Environ Toxicol Chem; 2006 Oct; 25(10):2576-83. PubMed ID: 17022396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeochemical environments of streambed-sediment pore waters with and without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA.
    Mumford AC; Barringer JL; Reilly PA; Eberl DD; Blum AE; Young LY
    Sci Total Environ; 2015 Feb; 505():1350-60. PubMed ID: 25130624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.
    Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L
    Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium(III) and chromium(VI) in environmental sediment samples.
    Wang LL; Wang JQ; Zheng ZX; Xiao P
    J Hazard Mater; 2010 May; 177(1-3):114-8. PubMed ID: 20034735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources and temporal dynamics of arsenic in a New Jersey watershed, USA.
    Barringer JL; Bonin JL; Deluca MJ; Romagna T; Cenno K; Alebus M; Kratzer T; Hirst B
    Sci Total Environ; 2007 Jun; 379(1):56-74. PubMed ID: 17448524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimony, Arsenic and Chromium Speciation Studies in Biała Przemsza River (Upper Silesia, Poland) Water by HPLC-ICP-MS.
    Jabłońska-Czapla M
    Int J Environ Res Public Health; 2015 Apr; 12(5):4739-57. PubMed ID: 25941843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of hexavalent chromium by hyporheic zone sediments in an urbanized estuary.
    Jung HB; Severini J; Hall E
    Water Sci Technol; 2020 Dec; 82(11):2389-2399. PubMed ID: 33339793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a Sediment Quality Triad approach to evaluate benthic toxicity in the Lower Hackensack River, New Jersey.
    Sorensen MT; Conder JM; Fuchsman PC; Martello LB; Wenning RJ
    Arch Environ Contam Toxicol; 2007 Jul; 53(1):36-49. PubMed ID: 17464441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry.
    Drinčić A; Zuliani T; Ščančar J; Milačič R
    Sci Total Environ; 2018 Oct; 637-638():1286-1294. PubMed ID: 29801221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.