These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20821507)

  • 1. A multimedia activity model for ionizable compounds: validation study with 2,4-dichlorophenoxyacetic acid, aniline, and trimethoprim.
    Franco A; Trapp S
    Environ Toxicol Chem; 2010 Apr; 29(4):789-99. PubMed ID: 20821507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-based concept for transport and partitioning of ionizing organics.
    Trapp S; Franco A; Mackay D
    Environ Sci Technol; 2010 Aug; 44(16):6123-9. PubMed ID: 20704208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of multimedia transport and fate models for chemicals: Principles, features and applicability.
    Su C; Zhang H; Cridge C; Liang R
    Sci Total Environ; 2019 Jun; 668():881-892. PubMed ID: 31018472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for estimating the bioconcentration factor of ionizable organic chemicals.
    Fu W; Franco A; Trapp S
    Environ Toxicol Chem; 2009 Jul; 28(7):1372-9. PubMed ID: 19245273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.
    Xie J; Meng W; Wu D; Zhang Z; Kong H
    J Hazard Mater; 2012 Sep; 231-232():57-63. PubMed ID: 22771348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.
    Franco A; Fu W; Trapp S
    Environ Toxicol Chem; 2009 Mar; 28(3):458-64. PubMed ID: 18937533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ionizable organic compounds in different species on the sorption of p-nitroaniline to sediment.
    Zhu L; Lou B; Yang K; Chen B
    Water Res; 2005; 39(2-3):281-8. PubMed ID: 15644236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios.
    Gobry V; Ulmeanu S; Reymond F; Bouchard G; Carrupt PA; Testa B; Girault HH
    J Am Chem Soc; 2001 Oct; 123(43):10684-90. PubMed ID: 11674000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the sewage treatment plant model SimpleTreat: applicability domain and data requirements.
    Franco A; Struijs J; Gouin T; Price OR
    Integr Environ Assess Manag; 2013 Oct; 9(4):560-8. PubMed ID: 23423806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.
    van Zelm R; Stam G; Huijbregts MA; van de Meent D
    Chemosphere; 2013 Jan; 90(2):312-7. PubMed ID: 22884491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shake-flask test for determination of biodegradation rates of (14)C-labeled chemicals at low concentrations in surface water systems.
    Ingerslev F; Nyholm N
    Ecotoxicol Environ Saf; 2000 Mar; 45(3):274-83. PubMed ID: 10702347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimedia environmental chemical partitioning from molecular information.
    Martínez I; Grifoll J; Giralt F; Rallo R
    Sci Total Environ; 2010 Dec; 409(2):412-22. PubMed ID: 21059471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential.
    Rayne S; Forest K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1550-94. PubMed ID: 20721799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of environmental concentration and comparison of output for existing chemicals using regional multimedia modeling.
    Kawamoto K; Park KA
    Chemosphere; 2006 May; 63(7):1154-64. PubMed ID: 16289227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental fate and exposure models: advances and challenges in 21
    Di Guardo A; Gouin T; MacLeod M; Scheringer M
    Environ Sci Process Impacts; 2018 Jan; 20(1):58-71. PubMed ID: 29318251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental Sorption Behavior of Ionic and Ionizable Organic Chemicals.
    Henneberger L; Goss KU
    Rev Environ Contam Toxicol; 2021; 253():43-64. PubMed ID: 31748892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical behavior of organic compounds in the interface of water/dual-cation organobentonite.
    Chen BL; Zhu LZ
    J Environ Sci (China); 2002 Jan; 14(1):12-9. PubMed ID: 11887307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An updated state of the science EQC model for evaluating chemical fate in the environment: application to D5 (decamethylcyclopentasiloxane).
    Hughes L; Mackay D; Powell DE; Kim J
    Chemosphere; 2012 Apr; 87(2):118-24. PubMed ID: 22221665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of herbicides in relation to soil variability and landscape position.
    Farenhorst A; Muc D; Monreal C; Florinski I
    J Environ Sci Health B; 2001 Jul; 36(4):379-87. PubMed ID: 11495016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of global scale multimedia contaminant fate model: incorporating paddy field compartment.
    Wei Y; Nishimori M; Kobara Y; Akiyama T
    Sci Total Environ; 2008 Nov; 406(1-2):219-26. PubMed ID: 18789490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.