These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20821651)
1. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms. Muijs B; Jonker MT Environ Toxicol Chem; 2010 Sep; 29(9):1943-9. PubMed ID: 20821651 [TBL] [Abstract][Full Text] [Related]
2. Assessing the bioavailability of complex petroleum hydrocarbon mixtures in sediments. Muijs B; Jonker MT Environ Sci Technol; 2011 Apr; 45(8):3554-61. PubMed ID: 21417446 [TBL] [Abstract][Full Text] [Related]
3. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms? Muijs B; Jonker MT Environ Sci Technol; 2012 Jan; 46(2):937-44. PubMed ID: 22201472 [TBL] [Abstract][Full Text] [Related]
4. Effect-directed assessment of the bioaccumulation potential and chemical nature of Ah receptor agonists in crude and refined oils. Vrabie CM; Sinnige TL; Murk AJ; Jonker MT Environ Sci Technol; 2012 Feb; 46(3):1572-80. PubMed ID: 22257214 [TBL] [Abstract][Full Text] [Related]
5. Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Jantunen AP; Tuikka A; Akkanen J; Kukkonen JV Ecotoxicol Environ Saf; 2008 Nov; 71(3):860-8. PubMed ID: 18353437 [TBL] [Abstract][Full Text] [Related]
6. Effects of the Razor Clam Tagelus plebeius on the Fate of Petroleum Hydrocarbons: A Mesocosm Experiment. Klerks PL; Kascak A; Cazan AM; Deb Adhikary N; Chistoserdov A; Shaik A; Osman S; Louka FR Arch Environ Contam Toxicol; 2018 Aug; 75(2):306-315. PubMed ID: 29470617 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus. Higgins CP; McLeod PB; MacManus-Spencer LA; Luthy RG Environ Sci Technol; 2007 Jul; 41(13):4600-6. PubMed ID: 17695903 [TBL] [Abstract][Full Text] [Related]
8. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Hyötyläinen T; Oikari A Chemosphere; 2004 Oct; 57(2):159-64. PubMed ID: 15294439 [TBL] [Abstract][Full Text] [Related]
9. Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes. Sormunen AJ; Leppänen MT; Kukkonen JV Environ Toxicol Chem; 2008 Apr; 27(4):854-63. PubMed ID: 18333684 [TBL] [Abstract][Full Text] [Related]
10. Uptake and accumulation of sediment-associated 4-nonylphenol in a benthic invertebrate (Lumbriculus variegatus, freshwater oligochaete). Croce V; De Angelis S; Patrolecco L; Polesello S; Valsecchi S Environ Toxicol Chem; 2005 May; 24(5):1165-71. PubMed ID: 16110996 [TBL] [Abstract][Full Text] [Related]
11. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067 [TBL] [Abstract][Full Text] [Related]
12. The effect of organism density on bioaccumulation of contaminants from sediment in three aquatic test species: a case for standardizing to sediment organic carbon. Van Geest JL; Poirier DG; Solomon KR; Sibley PK Arch Environ Contam Toxicol; 2011 May; 60(4):626-35. PubMed ID: 20640415 [TBL] [Abstract][Full Text] [Related]
13. Routes of uptake of diclofenac, fluoxetine, and triclosan into sediment-dwelling worms. Karlsson MV; Marshall S; Gouin T; Boxall AB Environ Toxicol Chem; 2016 Apr; 35(4):836-42. PubMed ID: 25892588 [TBL] [Abstract][Full Text] [Related]
14. A comparison of the bioaccumulation potential of three freshwater organisms exposed to sediment-associated contaminants under laboratory conditions. Van Geest JL; Poirier DG; Solomon KR; Sibley PK Environ Toxicol Chem; 2011 Apr; 30(4):939-49. PubMed ID: 21194176 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence. Almeida R; Mucha AP; Teixeira C; Bordalo AA; Almeida CM Biodegradation; 2013 Feb; 24(1):111-23. PubMed ID: 22692293 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during sediment tests with oligochaetes (Lumbriculus variegatus). Lyytikäinen M; Pehkonen S; Akkanen J; Leppänen M; Kukkonen JV Environ Toxicol Chem; 2007 Dec; 26(12):2660-6. PubMed ID: 18020670 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms. Liu T; Diao J; Di S; Zhou Z Chemosphere; 2015 Apr; 124():77-82. PubMed ID: 25475969 [TBL] [Abstract][Full Text] [Related]
18. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals. Dell'Anno A; Beolchini F; Gabellini M; Rocchetti L; Pusceddu A; Danovaro R Mar Pollut Bull; 2009 Dec; 58(12):1808-14. PubMed ID: 19740495 [TBL] [Abstract][Full Text] [Related]
19. Bioaccumulation of Highly Hydrophobic Chemicals by Lumbriculus variegatus. Burkhard LP; Lahren T; Highland TL; Hockett JR; Mount DR; Norberg-King TJ Arch Environ Contam Toxicol; 2019 Jan; 76(1):129-141. PubMed ID: 30151657 [TBL] [Abstract][Full Text] [Related]
20. Comparison of field and laboratory exposures of Lumbriculus variegatus to polychlorinated biphenyl-impacted river sediments. Beckingham B; Ghosh U Environ Toxicol Chem; 2010 Dec; 29(12):2851-8. PubMed ID: 20836065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]