These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2082199)

  • 1. Effect of chronic opioid treatment on phagocytosis in Tetrahymena.
    Salaman A; Roman M; Renaud FL; Silva WI
    Neuropeptides; 1990 Jul; 16(3):115-20. PubMed ID: 2082199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of an opioid receptor in the ciliate Tetrahymena.
    Chiesa R; Silva WI; Renaud FL
    J Eukaryot Microbiol; 1993; 40(6):800-4. PubMed ID: 7904878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by opioids of phagocytosis in peritoneal macrophages.
    Casellas AM; Guardiola H; Renaud FL
    Neuropeptides; 1991 Jan; 18(1):35-40. PubMed ID: 1675453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naloxone-reversible inhibition by opiates of phagocytosis in Tetrahymena thermophila and mouse macrophages.
    Casellas AM; De Jesus S; Guardiola H; Renaud FL
    P R Health Sci J; 1988 Aug; 7(2):103-5. PubMed ID: 2847209
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence.
    Wells JL; Bartlett JL; Ananthan S; Bilsky EJ
    J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential desensitization of mu- and delta- opioid receptors in selected neural pathways following chronic morphine treatment.
    Noble F; Cox BM
    Br J Pharmacol; 1996 Jan; 117(1):161-9. PubMed ID: 8825358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phagocytosis in Tetrahymena thermophila: naloxone-reversible inhibition by opiates.
    De Jesus S; Renaud FL
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(1):139-42. PubMed ID: 2566435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of naloxone with mu- and delta-opioid agonists on the respiration of rats.
    Pazos A; Flórez J
    Eur J Pharmacol; 1983 Feb; 87(2-3):309-14. PubMed ID: 6301857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action at the mu receptor is sufficient to explain the supraspinal analgesic effect of opiates.
    Fang FG; Fields HL; Lee NM
    J Pharmacol Exp Ther; 1986 Sep; 238(3):1039-44. PubMed ID: 3018217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic agonist treatment converts antagonists into inverse agonists at delta-opioid receptors.
    Liu JG; Prather PL
    J Pharmacol Exp Ther; 2002 Sep; 302(3):1070-9. PubMed ID: 12183665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kappa opioid partial agonist activity of the enkephalin-like pentapeptide BW942C based on urination and in vitro studies in humans and animals.
    Vaupel DB; Cone EJ; Johnson RE; Su TP
    J Pharmacol Exp Ther; 1990 Jan; 252(1):225-34. PubMed ID: 2153801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice.
    Szentirmay AK; Király KP; Lenkey N; Lackó E; Al-Khrasani M; Friedmann T; Timár J; Gyarmati S; Tóth G; Fürst S; Riba P
    Brain Res Bull; 2013 Jan; 90():66-71. PubMed ID: 22995282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naloxone-insensitive modulation of gastric acid output by [D-Met2,Pro5]enkephalinamide in rats.
    Till M; Szombath D; Gáti T; Székely JI
    Eur J Pharmacol; 1990 Jan; 175(3):355-8. PubMed ID: 2323351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic exposure to mu-opioid agonists produces constitutive activation of mu-opioid receptors in direct proportion to the efficacy of the agonist used for pretreatment.
    Liu JG; Prather PL
    Mol Pharmacol; 2001 Jul; 60(1):53-62. PubMed ID: 11408600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inhibitory effect of opioid peptides and morphine applied intrathecally and intracerebroventricularly on the micturition reflex in the cat.
    Hisamitsu T; de Groat WC
    Brain Res; 1984 Apr; 298(1):51-65. PubMed ID: 6586255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of mu and delta opioid binding sites in striatal slices of morphine-tolerant and -dependent mice.
    Abdelhamid EE; Takemori AE
    Eur J Pharmacol; 1991 Jun; 198(2-3):157-63. PubMed ID: 1650700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential cross-tolerance to mu and kappa opioid agonists in morphine-tolerant rats responding under a schedule of food presentation.
    Picker MJ; Negus SS; Powell KR
    Psychopharmacology (Berl); 1991; 103(1):129-35. PubMed ID: 1848712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance to morphine bradycardia in the rat.
    Kiang JG; Dewey WL; Wei ET
    J Pharmacol Exp Ther; 1983 Jul; 226(1):187-91. PubMed ID: 6864538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid control of the ruminant stomach motility: functional importance of mu, kappa and delta receptors.
    Ruckebusch Y; Bardon T; Pairet M
    Life Sci; 1984 Oct; 35(17):1731-8. PubMed ID: 6090847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice.
    Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F
    J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.