BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20822141)

  • 21. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase.
    Harris TK; Abeygunawardana C; Mildvan AS
    Biochemistry; 1997 Dec; 36(48):14661-75. PubMed ID: 9398185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton transfer in the mechanism of triosephosphate isomerase.
    Harris TK; Cole RN; Comer FI; Mildvan AS
    Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The conserved salt bridge linking two C-terminal beta/alpha units in homodimeric triosephosphate isomerase determines the folding rate of the monomer.
    Reyes-López CA; González-Mondragón E; Benítez-Cardoza CG; Chánez-Cárdenas ME; Cabrera N; Pérez-Montfort R; Hernández-Arana A
    Proteins; 2008 Aug; 72(3):972-9. PubMed ID: 18300228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of dihydroxyacetone phosphate in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Biochemistry; 2005 Feb; 44(7):2622-31. PubMed ID: 15709775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Asn11 in Catalysis by Triosephosphate Isomerase.
    Hegazy R; Cordara G; Wierenga RK; Richard JP
    Biochemistry; 2023 Jun; 62(11):1794-1806. PubMed ID: 37162263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydron transfer catalyzed by triosephosphate isomerase. Products of the direct and phosphite-activated isomerization of [1-(13)C]-glycolaldehyde in D(2)O.
    Go MK; Amyes TL; Richard JP
    Biochemistry; 2009 Jun; 48(24):5769-78. PubMed ID: 19425580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three hTIM mutants that provide new insights on why TIM is a dimer.
    Mainfroid V; Terpstra P; Beauregard M; Frère JM; Mande SC; Hol WG; Martial JA; Goraj K
    J Mol Biol; 1996 Mar; 257(2):441-56. PubMed ID: 8609635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analogue of the intermediate on the reaction pathway.
    Davenport RC; Bash PA; Seaton BA; Karplus M; Petsko GA; Ringe D
    Biochemistry; 1991 Jun; 30(24):5821-6. PubMed ID: 2043623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study.
    Wong A; Wu G
    J Am Chem Soc; 2003 Nov; 125(45):13895-905. PubMed ID: 14599230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of a minimum perturbation approach to predict TIM mutant structures.
    Joseph-McCarthy D; Petsko GA; Karplus M
    Protein Eng; 1995 Nov; 8(11):1103-15. PubMed ID: 8819976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural determinants for ligand binding and catalysis of triosephosphate isomerase.
    Kursula I; Partanen S; Lambeir AM; Antonov DM; Augustyns K; Wierenga RK
    Eur J Biochem; 2001 Oct; 268(19):5189-96. PubMed ID: 11589711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow proton transfer from the hydrogen-labelled carboxylic acid side chain (Glu-165) of triosephosphate isomerase to imidazole buffer in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Org Biomol Chem; 2008 Jan; 6(2):391-6. PubMed ID: 18175010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme activation through the utilization of intrinsic dianion binding energy.
    Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP
    Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power.
    Williams JC; Zeelen JP; Neubauer G; Vriend G; Backmann J; Michels PA; Lambeir AM; Wierenga RK
    Protein Eng; 1999 Mar; 12(3):243-50. PubMed ID: 10235625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional specificities of methylglyoxal synthase and triosephosphate isomerase: a combined QM/MM analysis.
    Zhang X; Harrison DH; Cui Q
    J Am Chem Soc; 2002 Dec; 124(50):14871-8. PubMed ID: 12475328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzyme architecture: optimization of transition state stabilization from a cation-phosphodianion pair.
    Reyes AC; Koudelka AP; Amyes TL; Richard JP
    J Am Chem Soc; 2015 Apr; 137(16):5312-5. PubMed ID: 25884759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance.
    Richard JP
    Biochemistry; 1991 May; 30(18):4581-5. PubMed ID: 2021650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions.
    Delboni LF; Mande SC; Rentier-Delrue F; Mainfroid V; Turley S; Vellieux FM; Martial JA; Hol WG
    Protein Sci; 1995 Dec; 4(12):2594-604. PubMed ID: 8580851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase.
    Zhai X; Go MK; O'Donoghue AC; Amyes TL; Pegan SD; Wang Y; Loria JP; Mesecar AD; Richard JP
    Biochemistry; 2014 Jun; 53(21):3486-501. PubMed ID: 24825099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.