These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20822183)

  • 1. DNA pol λ's extraordinary ability to stabilize misaligned DNA.
    Foley MC; Padow VA; Schlick T
    J Am Chem Soc; 2010 Sep; 132(38):13403-16. PubMed ID: 20822183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between conformational changes in pol lambda's active site upon binding incorrect nucleotides and mismatch incorporation rates.
    Foley MC; Schlick T
    J Phys Chem B; 2009 Oct; 113(39):13035-47. PubMed ID: 19572669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of DNA pol lambda R517 mutants indicate 517's crucial role in ternary complex stability and suggest DNA slippage origin.
    Foley MC; Schlick T
    J Am Chem Soc; 2008 Mar; 130(12):3967-77. PubMed ID: 18307346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of critical residues for the tight binding of both correct and incorrect nucleotides to human DNA polymerase λ.
    Brown JA; Pack LR; Sherrer SM; Kshetry AK; Newmister SA; Fowler JD; Taylor JS; Suo Z
    J Mol Biol; 2010 Nov; 403(4):505-15. PubMed ID: 20851705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase.
    Garcia-Diaz M; Bebenek K; Krahn JM; Pedersen LC; Kunkel TA
    Cell; 2006 Jan; 124(2):331-42. PubMed ID: 16439207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis.
    Brown JA; Pack LR; Sanman LE; Suo Z
    DNA Repair (Amst); 2011 Jan; 10(1):24-33. PubMed ID: 20961817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase λ inactivation by oxidized abasic sites.
    Stevens AJ; Guan L; Bebenek K; Kunkel TA; Greenberg MM
    Biochemistry; 2013 Feb; 52(5):975-83. PubMed ID: 23330920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The frameshift infidelity of human DNA polymerase lambda. Implications for function.
    Bebenek K; Garcia-Diaz M; Blanco L; Kunkel TA
    J Biol Chem; 2003 Sep; 278(36):34685-90. PubMed ID: 12829698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the lyase domain of human DNA polymerase lambda.
    DeRose EF; Kirby TW; Mueller GA; Bebenek K; Garcia-Diaz M; Blanco L; Kunkel TA; London RE
    Biochemistry; 2003 Aug; 42(32):9564-74. PubMed ID: 12911298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop 1 modulates the fidelity of DNA polymerase lambda.
    Bebenek K; Garcia-Diaz M; Zhou RZ; Povirk LF; Kunkel TA
    Nucleic Acids Res; 2010 Sep; 38(16):5419-31. PubMed ID: 20435673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minor groove interactions at the DNA polymerase beta active site modulate single-base deletion error rates.
    Osheroff WP; Beard WA; Yin S; Wilson SH; Kunkel TA
    J Biol Chem; 2000 Sep; 275(36):28033-8. PubMed ID: 10851238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential side-chain residue motions transform the binary into the ternary state of DNA polymerase lambda.
    Foley MC; Arora K; Schlick T
    Biophys J; 2006 Nov; 91(9):3182-95. PubMed ID: 16920835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human DNA polymerases lambda and beta show different efficiencies of translesion DNA synthesis past abasic sites and alternative mechanisms for frameshift generation.
    Blanca G; Villani G; Shevelev I; Ramadan K; Spadari S; Hübscher U; Maga G
    Biochemistry; 2004 Sep; 43(36):11605-15. PubMed ID: 15350147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of BRCT domains involved in nonhomologous end-joining: introducing the solution structure of the BRCT domain of polymerase lambda.
    Mueller GA; Moon AF; Derose EF; Havener JM; Ramsden DA; Pedersen LC; London RE
    DNA Repair (Amst); 2008 Aug; 7(8):1340-51. PubMed ID: 18585102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of functional properties of mammalian DNA polymerase lambda and DNA polymerase beta in reactions of DNA synthesis related to DNA repair.
    Lebedeva NA; Rechkunova NI; Dezhurov SV; Khodyreva SN; Favre A; Blanco L; Lavrik OI
    Biochim Biophys Acta; 2005 Aug; 1751(2):150-8. PubMed ID: 15979954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of oxidative DNA damage repair by DNA polymerase λ and MutYH by cross-talk of phosphorylation and ubiquitination.
    Markkanen E; van Loon B; Ferrari E; Parsons JL; Dianov GL; Hübscher U
    Proc Natl Acad Sci U S A; 2012 Jan; 109(2):437-42. PubMed ID: 22203964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Template strand scrunching during DNA gap repair synthesis by human polymerase lambda.
    Garcia-Diaz M; Bebenek K; Larrea AA; Havener JM; Perera L; Krahn JM; Pedersen LC; Ramsden DA; Kunkel TA
    Nat Struct Mol Biol; 2009 Sep; 16(9):967-72. PubMed ID: 19701199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfavorable electrostatic and steric interactions in DNA polymerase β E295K mutant interfere with the enzyme's pathway.
    Li Y; Gridley CL; Jaeger J; Sweasy JB; Schlick T
    J Am Chem Soc; 2012 Jun; 134(24):9999-10010. PubMed ID: 22651551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.
    Braithwaite EK; Kedar PS; Stumpo DJ; Bertocci B; Freedman JH; Samson LD; Wilson SH
    PLoS One; 2010 Aug; 5(8):e12229. PubMed ID: 20805875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.
    Gao G; DeRose EF; Kirby TW; London RE
    Biochemistry; 2006 Feb; 45(6):1785-94. PubMed ID: 16460025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.